A Note on Discrete Einstein Metrics

Huabin Ge¹, Jinlong Mei² and Da Zhou^{2,*}

 ¹ Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R. China.
² School of Mathematical Sciences, Xiamen University, Xiamen 361005, P.R. China.

Received October 31, 2018; Accepted December 20, 2018

Abstract. In this note, we prove that the space of all admissible piecewise linear metrics parameterized by the square of length on a triangulated manifold is a convex cone. We further study Regge's Einstein-Hilbert action and give a more reasonable definition of discrete Einstein metric than the former version. Finally, we introduce a discrete Ricci flow for three dimensional triangulated manifolds, which is closely related to the existence of discrete Einstein metrics.

AMS subject classifications: 52C25, 52C26, 53C44 **Key words**: Discrete Einstein metric, Discrete Ricci flow.

1 The space of piecewise linear metrics

Consider an *n* dimensional compact manifold *M* with a triangulation \mathcal{T} . The triangulation is written as $\mathcal{T} = \{\mathcal{T}_0, \mathcal{T}_1, \dots, \mathcal{T}_n\}$, where $\mathcal{T}_i \ (0 \le i \le n)$ represents the set of all *i* dimensional simplices. A piecewise linear metric is a map $l: \mathcal{T}_1 \to (0, +\infty)$ making each simplex an Euclidean simplex.

There are two disadvantages to think of *l* as the analogue of smooth Riemannian metric tensor *g*. For one thing, we know that $\mathfrak{M}_{\mathcal{T}}$, the space of all admissible piecewise linear metrics, is not convex (although it is a simply connected open set). For another, the scaling property of *l* is not good enough. If the smooth Riemannian metric tensor *g* scales to *cg* in the smooth manifold M^n , then the length $l(\gamma)$ of a curve $\gamma:[0,1] \rightarrow M$ scales to $\sqrt{cl}(\gamma)$.

If we take l^2 as the direct analogue of metric tensor g, both the above two disadvantages can be overcome. The idea of considering the square of l, not l itself, as an analogue of smooth Riemannian metric tensor comes naturally from the former work by the first author and Xu [4], where the idea has been used for piecewise linear manifolds with circle or sphere packing metrics. Firstly, we have

^{*}Corresponding author. *Email addresses:* zhouda@xmu.edu.cn (D. Zhou), bge@bjtu.edu.cn (H. Ge), mjl948512922@outlook.com (J. Mei)

Theorem 1.1. For a manifold M^n with triangulation \mathcal{T} , denote $g_{ij} = l_{ij}^2$ for each adjacent edge $i \sim j$. Then $\mathfrak{M}^2_{\mathcal{T}}$, the space of all admissible piecewise linear metrics parameterized by g_{ij} , is a nonempty connected open convex cone.

Proof. Rivin [11] first observed this fact for a single simplex case. Gu *et al.* [8] proved this fact for n = 2 by direct calculation. The proof here follows from Rivin's idea. For an *n*-simplex Δ embedded in the Euclidean space, we label all vertices as v_0, v_1, \dots, v_n and all $\frac{n(n+1)}{2}$ edges as l_{01}, \dots, l_{n-1n} . For brevity, let $n^* = \frac{n(n+1)}{2}$, then we need to show

$$\mathfrak{M}_{\Delta}^{2} = \left\{ \left(l_{01}^{2}, \cdots, l_{n-1n}^{2} \right) \in \mathbb{R}^{n^{*}} \middle| l_{01}, \cdots, l_{n-1n} \text{ are edges of some Euclidean } n \text{-simplex} \right\}$$

is convex. Construct a map from \mathfrak{M}^2_{Δ} to the set of all symmetric $n \times n$ matrices, which transforms $(l^2_{01}, \cdots, l^2_{n-1n})$ to

	$(2l_{01}^2)$	$l_{01}^2 + l_{02}^2 - l_{12}^2$	$l_{01}^2 + l_{03}^2 - l_{13}$		$l_{01}^2 + l_{0n}^2 - l_{1n}^2$	
$\frac{1}{2}$	*	$2l_{02}^2$	$l_{02}^2 + l_{03}^2 - l_{23}^2$	•••	$l_{02}^2 + l_{0n}^2 - l_{2n}^2$	
	*	*	$2l_{03}^2$	•••	$l_{03}^2 + l_{0n}^2 - l_{3n}^2$	
	:	:	:	۰.	÷	
	* /	*	*	•••	$2l_{0n}^2$)

The above matrix is the Gram matrix of *n* linear independent vectors $\vec{01}, \vec{02}, \dots, \vec{0n}$ and hence is positive definite. Obviously, the map is injective and surjective. Note that the set of all positive definite $n \times n$ matrices is a nonempty open convex subset of \mathbb{R}^{n^*} . Thus \mathfrak{M}^2_{Δ} is also a nonempty open convex subset of \mathbb{R}^{n^*} .

Next we prove the theorem for general triangulations. Assuming all edges are labeled in turn as e_1, \dots, e_m , where $m = |\mathcal{T}_1|$. Then for any *n*-simplex $\Delta = (v_0, \dots, v_n)$ with edges $e_{i_1}, \dots, e_{i_n*}, (i_1, \dots, i_{n^*} \in \{1, 2, \dots, m\})$, denote

$$\widetilde{\mathfrak{M}}_{\Delta}^{2} = \left\{ \left(\cdots, l_{i_{1}}^{2}, \cdots, l_{i_{2}}^{2}, \cdots, l_{i_{n^{*}}}^{2}, \cdots \right) \middle| \left(l_{i_{1}}^{2}, \cdots, l_{i_{n^{*}}}^{2} \right) \in \mathfrak{M}_{\Delta}^{2} \right\} = \mathfrak{M}_{\Delta}^{2} \times \mathbb{R}^{m-n^{*}},$$

we have

$$\mathfrak{M}_{\mathcal{T}}^2 = \bigcap_{\Delta \in \mathcal{T}_n} \widetilde{\mathfrak{M}}_{\Delta}^2.$$

This implies that $\mathfrak{M}^2_{\mathcal{T}}$ is a nonempty connected open convex cone of \mathbb{R}^m .

2 An interpretation of Regge's Einstein-Hilbert action

Now we deal with three dimensional case. We give an interpretation to three dimensional Regge's Einstein-Hilbert action. The idea here is natural when taking l^2 as the analog of