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Abstract. A local positive (semi)definite shift-splitting preconditioner for non-Hermi-
tian saddle point problems arising in finite element discretisations of hybrid formula-
tions of time-harmonic eddy current models is constructed. The convergence of the
corresponding iteration methods is proved and the spectral properties of the associated
preconditioned saddle point matrices are studied. Numerical experiments show the ef-
ficiency of the proposed preconditioner for Krylov subspace methods.
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1. Introduction

Let A∈ Cn×n be a non-Hermitian positive (semi)definite matrix — i.e. H = (1/2)(A+A∗)

is positive (semi)definite, and B ∈ Cm×n with m ≤ n be a full rank matrix. We consider
iterative solutions of the following large sparse saddle point problem:

Aw ≡

�
A B∗

−B 0

��
x

y

�
=

�
f

g

�
≡ p, (1.1)

where B∗ denotes the conjugate transpose of B and f ∈ Cn, g ∈ Cm are given vectors. It is
well-known that if A and B are, respectively, positive definite and full rank matrices or if

null(A)∩ null(B) = {0}, null(B∗) = {0},
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then the non-Hermitian saddle point matrix A is nonsingular [6, 17]. The saddle point
problem (1.1) appears in various applications, including computational fluid dynamics
[30], constrained and weighted least squares problems [34], electromagnetism [19], time-
harmonic eddy current models [5, 36, 38, 39], geomechanics [18], and meshfree discreti-
sation of elasticity problems [15,27]. The reader can also consult [17] and the references
therein for more information about the problem.

Recently, a lot of efforts have been spent on iteration methods for the problem (1.1). The
list of the methods studied includes classical Uzawa iteration method [2] and its generalisa-
tions [13,20,28,31], Hermitian and skew-Hermitian splitting (HSS) iteration methods [11]
and its variants [9,10,26,33,45], shift-splitting iteration methods [1,14,22–24,29,41,42],
residual reduction algorithms [3] and Krylov subspace iteration methods [40]. If A is
a non-Hermitian and/or ill-conditioned matrix, the preconditioning is often used to accel-
erate the convergence. For example, block diagonal and block triangular preconditioners
are considered in [4, 12], HSS preconditioners in [16, 21, 25] and shift-splitting precondi-
tioners in [23,43]— cf. also [17,35] and references therein. These iteration methods and
preconditioners often depend on the problem studied and have to be adjusted with respect
to the corresponding coefficient matrices.

In this work, we focus on a class of non-Hermitian saddle point problems arising in the
finite element discretisations of hybrid formulations of time-harmonic eddy current models
[38, 39]. A model often used to simulate the electromagnetic phenomena of alternating
currents at low frequencies can be described by the equations

curl
�
σ−1curl HC

�
+ iωµHC = curl

�
σ−1Je,C

�
in ΩC ,

curl
�
µ−1curl EI

�
= −iωJe,I in ΩI ,

div(εEI ) = 0 in ΩI ,

µ−1curl EI × n= 0 on ∂Ω,

εEI · n= 0 on ∂Ω,

HC × n= (−iωµ)−1curl EI × n on Γ ,

EI × n= σ−1
�
curl HC − Je,C

�
× n on Γ ,

(1.2)

where E, H, Je, µ, σ, ω and i, respectively, denote electric field, magnetic field, generator
current, magnetic permeability, electric conductivity, a nonzero angular frequency and the
imaginary unit. The computational domain Ω ⊂ R3 is a simply connected Lipschitz poly-
hedron, which consists of the conducting region ΩC ⊂ Ω and its complement ΩI = Ω\Ω̄C .
We assume that ΩC and ΩI are Lipschitz polyhedrons, ΩC is connected but not necessarily
simply connected and by Ω̄C and Ω̄I we denote the closures of ΩC and ΩI , respectively. Ap-
plying the finite element method of [39] to (1.2), one obtains the following linear system:
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