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Abstract

In this paper, an efficient numerical method for solving the general fractional diffusion

equations with Riesz fractional derivative is proposed by combining the fractional compact

difference operator and the boundary value methods. In order to efficiently solve the

generated linear large-scale system, the generalized minimal residual (GMRES) algorithm

is applied. For accelerating the convergence rate of the iterative, the Strang-type, Chan-

type and P-type preconditioners are introduced. The suggested method can reach higher

order accuracy both in space and in time than the existing methods. When the used

boundary value method is Ak1,k2
-stable, it is proven that Strang-type preconditioner is

invertible and the spectra of preconditioned matrix is clustered around 1. It implies that

the iterative solution is convergent rapidly. Numerical experiments with the absorbing

boundary condition and the generalized Dirichlet type further verify the efficiency.
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1. Introduction

Consider the following problem of fractional-in-space diffusion equations

∂u(x, t)

∂t
= κ

∂γu(x, t)

∂|x|γ
+ f(x, t), (x, t) ∈ (a, b)× (t0, T ], (1.1)

with the initial value condition

u(x, t0) = u0(x), x ∈ (a, b), (1.2)

and the generalized Dirichlet type boundary condition

u(x, t) = ψ(x, t), x /∈ (a, b), t ∈ (t0, T ], (1.3)
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where κ > 0 is the diffusion coefficient, 1 < γ ≤ 2, u0(x) is given smooth function, the Riesz

fractional derivative of order γ is defined by

∂γu(x, t)

∂|x|γ
= −

1

2 cos(πγ/2)
[aD

γ
xu(x, t) +x D

γ
b u(x, t)] , (1.4)

where aD
γ
xu(x, t) and xD

γ
b u(x, t) are the left and right Riemann-Liouville fractional derivatives,

respectively. Function ψ(x, t) should satisfy that there exist positive constants M and C such

that

|ψ(x, t)|

|x|γ−ǫ
< C for positive small ǫ when |x| > M, (1.5)

see [1]. One of the most popular cases is ψ(x, t) ≡ 0, which is the so called absorbing boundary

condition, and implying that the particle is killed whenever it leaves the interval (a, b). The

above problems arise frequently from anomalous diffusion, turbulence, biology and the other

scientific fields, see, for example [2–6] and references therein.

In the recent years, around this particular case of ψ(x, t) ≡ 0, with the arguments such

as shifted Grünwald formula [7], fractional central difference [8, 9], Lubich’s operator [10] and

their weighted averages (see, e.g., [11]), some numerical methods for solving problem (1.1)-(1.3)

have been presented. For example, Haghighi et al. [3] proposed the explicit and implicit Euler

methods, Çelik and Duman [2] suggested a Crank-Nicolson method, Lin et al. [12] derived

the preconditioned conjugate gradient normal residual method and preconditioned generalized

minimal residual method, Ding et al. [4] developed a fourth-order approximation for Riesz

fractional derivative and then applied it to the problem (1.1)-(1.3). These methods can arrive at

the high-order accuracy in space. Nevertheless, owing to only Euler method and Crank-Nicolson

method were used to the time discretization, their accuracies in time need to be improved. In

order to raising up the temporal accuracy of numerical methods, Gu and Lei [13,14] considered

a class of BVMs with Strange-type preconditioner for the two-side fractional-in-space diffusion

equation, respectively. However, their method has only order one in space.

In view of the above research, for the more general problems (1.1)-(1.3), it is interesting to

construct the numerical methods with higher-order accuracies both in time and space. Hence, in

the present paper, we will focus on this topic. For the space-discretization, we will consider the

fractional compact difference operator with high-order accuracy [15, 16]. It is remarkable that

the compact difference method has successively been applied to solve two-dimensional space

fractional Schrödinger equation. For the time-discretization, we will take use of the boundary

value methods (BVMs) based on linear multistep formulaes [17]. It has been applied recently

to the distributed order sub-diffusion equation [18]. Comparing the underlying linear multistep

formulaes, this type of BVMs can arrive at higher-order accuracy and possess Ak1,k2
-stability

when applied to ordinary differential equations (ODEs). Although they need a large computa-

tional cost, this may be improved effectively by introducing some circulant preconditioners, such

as the Strang-type, Chan-type, P-type preconditioners and so forth, see, for example [19–23].

Moreover, by applying the GMRES algorithm to the generated preconditional systems, the

computational efficiency of the BVMs can be further raised.

This paper is organized as follows. In Section 2, we briefly review the underlying BVMs

applied to the linear ODEs, which is a foundation that we construct the compact BVMs for

the fractional-in-space diffusion equations. In Section 3, a fully discrete difference scheme

for the problem (1.1)-(1.3) is derived by combining the underlying BVMs and the fractional

compact difference method. In Section 4, in order to raise the computational efficiency of the


