On HSS-Based Iteration Methods for Two Classes of Tensor Equations

Ming-Yu Deng and Xue-Ping Guo*
School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China
Normal University, Shanghai 200241, P.R. China.
Received 14 August 2019; Accepted (in revised version) 7 October 2019.

Abstract

HSS-based iteration methods for large systems of tensor equations $\mathscr{T}(x)=b$ and $A x=\mathscr{T}(x)+b$ are considered and conditions of their local convergence are presented. Numerical experiments show that for the equations $\mathscr{T}(x)=b$, the Newton-HSS method outperforms the Newton-GMRES method. For nonlinear convection-diffusion equations the methods based on HSS iterations are generally more efficient and robust than the Newton-GMRES method.

AMS subject classifications: 15A69, 65F10, 65W05
Key words: Tensor equation, HSS iteration, k-mode product, convergence, large sparse system.

1. Introduction

We consider numerical methods based on HSS iterations for two classes of tensor equations. Let us start with definitions and auxiliary results.

Definition 1.1 (cf. Refs. [14, 19, 23, 24, 29]). We say that \mathscr{A} is a real or complex tensor of order- m dimension- n and write $\mathscr{A} \in \mathbb{R}^{[m, n]}$ or $\mathscr{A} \in \mathbb{C}^{[m, n]}$, if its entries $\mathscr{A}_{i_{1}, \ldots, i_{m}}, i_{j}=$ $1, \ldots, n, j=1, \ldots, m$ belong to the set of real \mathbb{R} or complex \mathbb{C} numbers, respectively.

Thus order- 0 tensor is a scale, order- 1 tensor is a vector and order- 2 tensor is a matrix.
Definition 1.2 (cf. Ding \& Wei [12]). A tensor \mathscr{A} is said to be diagonal if

$$
\mathscr{A}_{i_{1}, \ldots, i_{m}}=0 \quad \text { for } \quad \delta_{i_{1}, \ldots, i_{m}}=0
$$

where

$$
\delta_{i_{1}, \ldots, i_{m}}= \begin{cases}1, & \text { if } i_{1}=i_{2}=\cdots=i_{m} \\ 0, & \text { otherwise }\end{cases}
$$

[^0]In particular, the identity (zero) tensor is the diagonal tensor, all diagonal entries of which are equal to one (zero).
Definition 1.3 (cf. Refs. [4, 18, 26, 34]). The k-mode product of tensor $\mathscr{A} \in \mathbb{R}^{I_{1} \times I_{2} \times \cdots \times I_{m}}$ and vector $x \in \mathbb{R}^{I_{k}}$ denoted by $\mathscr{A} \bar{x}_{k} x$, is the tensor of order-(m-1) with $i_{1} \ldots i_{k-1} i_{k+1} \ldots i_{m}{ }^{-}$ components

$$
\left(\mathscr{A} \bar{x}_{k} x\right)_{i_{1} \ldots i_{k-1} i_{k+1} \ldots i_{m}}=\sum_{i_{k}=1}^{I_{k}} \mathscr{A}_{i_{1} \ldots i_{k-1} i_{k} i_{k+1} \ldots i_{m}} x_{i_{k}}
$$

where $k \leq m$ and $I_{j}, j=1, \ldots, m$ are positive integers.
In what follows we use the following notations.
Notation 1. If $\mathscr{A} \in \mathbb{R}^{[m, n]}$ and $b \in \mathbb{R}^{n}$, then

$$
\begin{align*}
& \mathscr{A} x^{m}:=\sum_{i_{1}, i_{2}, \ldots, i_{m}=1}^{n} \mathscr{A}_{i_{1}, i_{2}, \ldots, i_{m}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{m}} \quad \text { is a scale, } \tag{1.1}\\
& \left(\mathscr{A} x^{m-1}\right)_{i}:=\sum_{i_{2}, \ldots, i_{m}=1}^{n} \mathscr{A}_{i, i_{2}, \ldots, i_{m}} x_{i_{2}} \ldots x_{i_{m}} \quad \text { is a vector, } \tag{1.2}\\
& \left(\mathscr{A} x^{m-2}\right)_{i, j}:=\sum_{i_{3}, \ldots, i_{m}=1}^{n} \mathscr{A}_{i, j, i_{3}, \ldots, i_{m}} x_{i_{3}} \ldots x_{i_{m}} \quad \text { is a matrix. }
\end{align*}
$$

Notations (1.1) and (1.2) are introduced by Qi [29] and have been written as

- $\mathscr{A} x^{m}:=\mathscr{A} \bar{x}_{m} x \bar{x}_{m-1} x \bar{x}_{m-2} \cdots \bar{x}_{3} x \bar{x}_{2} x \bar{x}_{1} x$ (scale),
- $\mathscr{A} x^{m-1}:=\mathscr{A} \overline{\times}_{m} x \overline{\times}_{m-1} x \overline{\times}_{m-2} \cdots \overline{\times}_{3} x \overline{\times}_{2} x$ (vector),
- $\mathscr{A} x^{m-2}:=\mathscr{A} \bar{x}_{m} x \bar{x}_{m-1} x \bar{x}_{m-2} \cdots \bar{x}_{3} x$ (matrix)
later on - cf. [11, 25, 27].
Definition 1.4 (cf. Refs. [20, 25, 27]). The equation

$$
\begin{equation*}
\mathscr{A}_{1} x^{m-1}+\mathscr{A}_{2} x^{m-2}+\mathscr{A}_{3} x^{m-3}+\cdots+\mathscr{A}_{m-1} x+\mathscr{A}_{m}=0, \quad \mathscr{A}_{1} \neq 0 \tag{1.3}
\end{equation*}
$$

is called a real (complex) tensor equation of order m if for all $1 \leqslant i \leqslant m$ one has $\mathscr{A}_{i} \in$ $\mathbb{R}^{[m-i+1, n]}, x \in \mathbb{R}^{n}\left(\mathscr{A}_{i} \in \mathbb{C}^{[m-i+1, n]}, x \in \mathbb{C}^{n}\right)$, where

$$
\begin{equation*}
\mathscr{A}_{i} x^{m-i}=\mathscr{A}_{i} \bar{x}_{m-i+1} x \bar{x}_{m-i} x \bar{x}_{m-i-1} \cdots \bar{x}_{3} x \bar{x}_{2} x, \quad 1 \leqslant i \leqslant m . \tag{1.4}
\end{equation*}
$$

Note that tensor notations can be used to represent Taylor polynomials of multivariable functions. Thus if Ω is a convex set and $F: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a k-time differentiable function, then we can write the Taylor's expansion of F around $x=x_{c} \in \mathbb{R}^{n}$ as

$$
\begin{aligned}
F(x) & =\sum_{i=0}^{k} \frac{1}{i!} F^{(i)}\left(x_{c}\right)\left(x-x_{c}\right)^{i}+o\left(\left\|x-x_{c}\right\|^{k}\right) \\
& =F\left(x_{c}\right)+F^{\prime}\left(x_{c}\right)\left(x-x_{c}\right)+\cdots+\frac{1}{k!} F^{(k)}\left(x_{c}\right)\left(x-x_{c}\right)^{k}+o\left(\left\|x-x_{c}\right\|^{k}\right),
\end{aligned}
$$

[^0]: *Corresponding author. Email addresses: xpguo@math.ecnu.edu.cn (X.-P. Guo), dengmingyu@live.com (M.-Y. Deng)

