
J. Math. Study
doi: 10.4208/jms.v53n2.20.03

Vol. 53, No. 2, pp. 159-191
June 2020

PowerNet: Efficient Representations of
Polynomials and Smooth Functions by
Deep Neural Networks with Rectified Power Units

Bo Li1,2, Shanshan Tang3 and Haijun Yu∗,1,2

1 NCMIS & LSEC, Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics and Systems Science, Beijing 100190, China.
2 School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China.
3 China Justice Big Data Institute, Beijing 100043, China.

Received September 6, 2019; Accepted Febuary 17, 2020;
published online April 20, 2020.

Dedicated to Professor Jie Shen on the Occasion of his 60th Birthday

Abstract. Deep neural network with rectified linear units (ReLU) is getting more and
more popular recently. However, the derivatives of the function represented by a ReLU
network are not continuous, which limit the usage of ReLU network to situations only
when smoothness is not required. In this paper, we construct deep neural networks
with rectified power units (RePU), which can give better approximations for smooth
functions. Optimal algorithms are proposed to explicitly build neural networks with
sparsely connected RePUs, which we call PowerNets, to represent polynomials with
no approximation error. For general smooth functions, we first project the function to
their polynomial approximations, then use the proposed algorithms to construct cor-
responding PowerNets. Thus, the error of best polynomial approximation provides an
upper bound of the best RePU network approximation error. For smooth functions in
higher dimensional Sobolev spaces, we use fast spectral transforms for tensor-product
grid and sparse grid discretization to get polynomial approximations. Our construc-
tive algorithms show clearly a close connection between spectral methods and deep
neural networks: PowerNets with n hidden layers can exactly represent polynomials
up to degree sn, where s is the power of RePUs. The proposed PowerNets have po-
tential applications in the situations where high-accuracy is desired or smoothness is
required.
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1 Introduction

Artificial neural network (ANN) has been a hot research topic for several decades. Deep
neural network (DNN), a special class of ANN with multiple hidden layers, is getting
more and more popular recently. Since 2006, when efficient training methods were in-
troduced by Hinton et al [1], DNNs have brought significant improvements in several
challenging problems including image classification, speech recognition, computational
chemistry and numerical solutions of high-dimensional partial differential equations, see
e.g. [2–6], and references therein.

The success of ANNs relies on the fact that they have good representation power. The
universal approximation property of neural networks is well-known: neural networks
with one hidden layer of continuous/monotonic sigmoid activation functions are dense
in continuous function space C([0,1]d) and L1([0,1]d), see e.g. [7–9] for different proofs
in different settings. Actually, for neural network with non-polynomial C∞ activation
functions, the upper bound of approximation error is of spectral type even using only
one-hidden layer, i.e. error rate ε=n−k/d can be obtained theoretically for approximation
functions in Sobolev space Wk([−1,1]d), where d is the number of dimensions, n is the
number of hidden nodes in the neural network [10]. However, it is believed that one
of the basic reasons behind the success of DNNs is the fact that deep neural networks
have broader scopes of representation than shallow ones. Recently, several works have
demonstrated or proved this in different settings. For example, by using the composition
function argument, Poggio et al [11] showed that deep networks can avoid the curse of
dimensionality for an important class of problems corresponding to compositional func-
tions. In the general function approximation aspect, it has been proved by Yarotsky [12]
that DNNs using rectified linear units (abbr. ReLU, a non-smooth activation function
defined as σ1(x) :=max{0,x}) need at most O(ε d

k (log|ε|+1)) units and nonzero weights
to approximation functions in Sobolev space Wk,∞([−1,1]d) within ε error. This is simi-
lar to the results of shallow networks with one hidden layer of C∞ activation units, but
only optimal up to a O(log|ε|) factor. Similar results for approximating functions in
Wk,p([−1,1]d) with p<∞ using ReLU DNNs are given by Petersen and Voigtlaender [13].
The significance of the works by Yarotsky [12] and Peterson and Voigtlaender [13] is that
by using a very simple rectified nonlinearity, DNNs can obtain high order approximation
property. It is also proved by E and Wang [14] that thin and deep ReLU networks can ap-
proximate analytic functions exponentially fast. Shallow networks do not hold such a
good property. Other works show deeper ReLU DNNs have better approximation prop-
erty include the work by He et al. [15] and the work by Opschoor et al. [16], which relate
ReLU DNNs to finite element methods.


