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Abstract. The phase-field dendritic crystal growth model is a highly nonlinear system
that couples the anisotropic Allen-Cahn type equation and the heat equation. By com-
bining the recently developed SAV (Scalar Auxiliary Variable) method with the linear
stabilization approach, as well as a special decoupling technique, we arrive at a totally
decoupled, linear, and unconditionally energy stable scheme for solving the dendrit-
ic model. We prove its unconditional energy stability rigorously and present various
numerical simulations to demonstrate the stability and accuracy.
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1 Introduction

The use of the phase-field method for investigating the process of dendritic crystal
growth can be attributed to the pioneering modeling work by Halperin, Kobayashi, and
Collins et. al. in [1-3], and see also the subsequent modeling/simulations in [4-15]. In a
typical phase-field dendritic crystal system, an order parameter (called phase-field vari-
able) is usually introduced to define the physical state (liquid or solid) at each point
and the total free energy incorporates a specific form of the conformational entropy
with anisotropic spatial gradients. The system usually consists of two coupled nonlin-
ear, second-order equations: the Allen-Cahn type equation with a gradient-dependent
anisotropic coefficient, and the heat transfer equation.
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In this paper, we consider numerical approximations for a phase-field dendritic crys-
tal growth model which was proposed by Karma and Rappel in [12]. It is well known
that the main objective of algorithm design for phase-field related models is to construct
efficient and easy-to-implement numerical schemes that can verify a discrete energy law.
For the particular dendritic model proposed in [12], the associated difficulties to this aim
lie on how to discretize three nonlinear terms, including the anisotropic coefficient, the
cubic polynomial term, as well as the heat transfer term. Simple explicit treatment for
these nonlinear terms will induce large spatial oscillations that may cause the computa-
tions easily blow up or loss of accuracy (shown in Figure 2, Figure 4, and Figure 5(b)).

We recall there exist plenty of time discretization methods that had been proved to
be effective for solving the phase field models, see [15-38]. However, for this partic-
ular model considered in this paper, most of the available schemes are either nonlin-
ear which need some efficient iterative solvers, and/or do not preserve energy stability
at all (cf. [7,39-44] and the references therein). Therefore, in this paper, by combining
the recently developed SAV (Scalar Auxiliary Variable) method with the linear stabiliza-
tion approach, as well as a special decoupling technique, we arrive at a fully-decoupled,
stabilized-SAV scheme. The novelty of this scheme is that two linear stabilization terms
are added in the SAV scheme, where one is used to remove the oscillations caused by
the anisotropic coefficient, and the other is added to the latent heat transfer term in or-
der to realize the decoupling. At each time step, one can only solve an elliptic system
for the phase function, and a linear elliptic equation for the temperature. We then prove
that the unconditionally energy stability of the scheme and present numerous numerical
examples to illustrate its accuracy and stability numerically.

The rest of the paper is organized as follows. In Section 2, we give a brief introduction
of the governing PDE system for the phase-field anisotropic dendritic crystal growth
model. In Section 3, we develop the scheme for solving the model, and rigorously prove
the unconditional energy stability. Various numerical experiments are given in Section 4
to demonstrate the accuracy and efficiency of the proposed numerical scheme. Finally,
some concluding remarks are given in Section 5.

2 Model equations

We give a brief description of the anisotropic phase-field dendritic crystal growth
model proposed in [12]. Let () be a smooth, open, bounded, connected domain in R?
with d =2,3. A scalar phase-field function ¢(x,t) is introduced to label the liquid and
solid phase, where ¢ =1 for the solid and ¢ = —1 for the fluid. These two regions are
connected by a smooth transitional layer with the thickness €. The total free energy is
postulated as follows,

1 A, 1
E@.T)= [ (IK(V4) 9P+ 5 T+ 5 F(9) ) dx, 2.1)



