A Note on Rough Parametric Marcinkiewicz

 FunctionsLaith Hawawsheh ${ }^{1}$, Ahmad Al-Salman ${ }^{2, *}$ and Shaher Momani ${ }^{3,4}$
${ }^{1}$ School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan
${ }^{2}$ Department of Mathematics, Sultan Qaboos University, P.O. Box 36, Al-Khod 123 Muscat, Sultanate of Oman
${ }^{3}$ Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan
${ }^{4}$ Department of Mathematics and Sciences, College of Humanities and Sciences, Ajman University, Ajman, UAE

Received 23 November 2017; Accepted (in revised version) 13 April 2018

Abstract

In this note, we obtain sharp L^{p} estimates of parametric Marcinkiewicz integral operators. Our result resolves a long standing open problem. Also, we present a class of parametric Marcinkiewicz integral operators that are bounded provided that their kernels belong to the sole space $L^{1}\left(S^{n-1}\right)$.

Key Words: Marcinkiewicz integrals, parametric Marcinkiewicz functions, rough kernels, Fourier transform, Marcinkiewicz interpolation theorem.
AMS Subject Classifications: 42B20, 42B15, 42B25

1 Introduction

Let $n \geq 2$ and \mathbb{S}^{n-1} be the unit sphere in \mathbb{R}^{n} equipped with the normalized Lebesgue measure $d \sigma$. Suppose that Ω is a homogeneous function of degree zero on \mathbb{R}^{n} that satisfies $\Omega \in L^{1}\left(\mathbb{S}^{n-1}\right)$ and

$$
\begin{equation*}
\int_{S^{n-1}} \Omega\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0 \tag{1.1}
\end{equation*}
$$

In 1960, Hörmander (see [6]) introduced the following parametric Marcinkiewicz function μ_{Ω}^{ρ} of higher dimension by

$$
\begin{equation*}
\mu_{\Omega}^{\rho} f(x)=\left(\left.\left.\int_{-\infty}^{\infty}\left|2^{-\rho t} \int_{|y| \leq 2^{t}} f(x-y)\right| y\right|^{-n+\rho} \Omega(y) d y\right|^{2} d t\right)^{\frac{1}{2}} \tag{1.2}
\end{equation*}
$$

[^0]where $\rho>0$. When $\rho=1$, the corresponding operator $\mu_{\Omega}=\mu_{\Omega}^{1}$ is the classical Marcinkiewicz integral operator introduced by Stein (see [7]). When $\Omega \in \operatorname{Lip}_{\alpha}\left(\mathrm{S}^{n-1}\right)$, $(0<\alpha \leq 1)$, Stein proved that μ_{Ω} is bounded on L^{p} for all $1<p \leq 2$. Subsequently, Benedek-Calderón-Panzone proved the L^{p} boundedness of μ_{Ω} for all $1<p<\infty$ under the condition $\Omega \in C^{1}\left(\mathbb{S}^{n-1}\right)$ (see [4]). Since then, the L^{p} boundedness of μ_{Ω} has been investigated by several authors. For background information, we advise readers to consult [1-3,7], among others.

Concerning the problem whether there are some L^{p} results on μ_{Ω}^{ρ} similar to those on μ_{Ω} when Ω satisfies only some size conditions, Ding, Lu, and Yabuta (see [5]) studied the general operator

$$
\begin{equation*}
\mu_{\Omega, h}^{\rho} f(x)=\left(\left.\left.\int_{-\infty}^{\infty}\left|2^{-\rho t} \int_{|y| \leq 2^{t}} f(x-y)\right| y\right|^{-n+\rho} h(|y|) \Omega(y) d y\right|^{2} d t\right)^{\frac{1}{2}} \tag{1.3}
\end{equation*}
$$

where h is a radial function on \mathbb{R}^{n} satisfying $h(|x|) \in l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right), 1 \leq q \leq \infty$, where the class $l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)$is defined by

$$
l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)=\left\{h:|h|_{l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)}=\sup _{j \in \mathbb{Z}}\left(\int_{2^{j-1}}^{2^{j}}|h(r)|^{q} \frac{d r}{r}\right)^{\frac{1}{q}}<\infty\right\} .
$$

For $q=\infty$, we set $l^{\infty}\left(L^{\infty}\right)\left(\mathbb{R}^{+}\right)=L^{\infty}\left(\mathbb{R}^{+}\right)$. It is clear that

$$
l^{\infty}\left(L^{\infty}\right)\left(\mathbb{R}^{+}\right) \subset l^{\infty}\left(L^{r}\right)\left(\mathbb{R}^{+}\right) \subset l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right) \subset l^{\infty}\left(L^{1}\right)\left(\mathbb{R}^{+}\right)
$$

$1<q<r<\infty$. Ding, Lu, and Yabuta (see [5]) proved the following result:
Theorem 1.1 ([5]). Suppose that $\Omega \in L\left(\log ^{+} L\right)\left(\mathrm{S}^{n-1}\right)$ is a homogeneous function of degree zero on \mathbb{R}^{n} satisfying (1.1) and $h(|x|) \in l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right)$for some $1<q \leq \infty$. If $\operatorname{Re}(\rho)=\alpha>0$, then $\left|\mu_{\Omega, h}^{\rho} f\right|_{2} \leq C \alpha^{-\frac{1}{2}}|f|_{2}$, where C is independent of ρ and f.

In [1], Al-Salman and Al-Qassem considered the L^{p} boundedness of $\mu_{\Omega, h}^{\rho}$ for $p \neq 2$. which was left open in [5]. They proved the following result:

Theorem 1.2 ([1]). Suppose that $\Omega \in L\left(\log ^{+} L\right)\left(S^{n-1}\right)$ is a homogeneous function of degree zero on \mathbb{R}^{n} satisfying (1.1). If $h(|x|) \in l^{\infty}\left(L^{q}\right)\left(\mathbb{R}^{+}\right), 1<q \leq \infty$, and $\alpha=\operatorname{Re}(\rho)>0$, then $\left|\mu_{\Omega, h}^{\rho} f\right|_{p} \leq C \alpha^{-1}|f|_{p}$ for all $1<p<\infty$, where C is independent of ρ and f.

In light of Theorem 1.1, it is clear that the dependence of the L^{p} bounds on α in Theorem 1.2 is not sharp. More precisely, we have the following long standing natural open problem:
Problem:
(a) Is the power $(-1 / 2)$ of α in Theorem 1.1 sharp?

[^0]: *Corresponding author. Email addresses: Laith.hawawsheh@gju.edu.jo (L. Hawawsheh), alsalman@squ. edu.om (A. Al-Salman), s.momani@ju.edu.jo (S. Momani)

