A Note on Rough Parametric Marcinkiewicz Functions

Laith Hawawsheh¹, Ahmad Al-Salman^{2,*} and Shaher Momani^{3,4}

¹ School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan

² Department of Mathematics, Sultan Qaboos University, P.O. Box 36, Al-Khod 123 Muscat, Sultanate of Oman

³ Department of Mathematics, Faculty of Science, University of Jordan, Amman 11942, Jordan

⁴ Department of Mathematics and Sciences, College of Humanities and Sciences, *Ajman University, Ajman, UAE*

Received 23 November 2017; Accepted (in revised version) 13 April 2018

Abstract. In this note, we obtain sharp L^p estimates of parametric Marcinkiewicz integral operators. Our result resolves a long standing open problem. Also, we present a class of parametric Marcinkiewicz integral operators that are bounded provided that their kernels belong to the sole space $L^1(\mathbb{S}^{n-1})$.

Key Words: Marcinkiewicz integrals, parametric Marcinkiewicz functions, rough kernels, Fourier transform, Marcinkiewicz interpolation theorem.

AMS Subject Classifications: 42B20, 42B15, 42B25

1 Introduction

Let $n \ge 2$ and \mathbb{S}^{n-1} be the unit sphere in \mathbb{R}^n equipped with the normalized Lebesgue measure $d\sigma$. Suppose that Ω is a homogeneous function of degree zero on \mathbb{R}^n that satisfies $\Omega \in L^1(\mathbb{S}^{n-1})$ and

$$\int_{\mathbb{S}^{n-1}} \Omega(x') d\sigma(x') = 0. \tag{1.1}$$

In 1960, Hörmander (see [6]) introduced the following parametric Marcinkiewicz function μ_{Ω}^{ρ} of higher dimension by

$$\mu_{\Omega}^{\rho} f(x) = \left(\int_{-\infty}^{\infty} \left| 2^{-\rho t} \int_{|y| \le 2^{t}} f(x-y) \left| y \right|^{-n+\rho} \Omega(y) dy \right|^{2} dt \right)^{\frac{1}{2}},$$
(1.2)

http://www.global-sci.org/ata/

©2020 Global-Science Press

^{*}Corresponding author. *Email addresses:* Laith.hawawsheh@gju.edu.jo(L. Hawawsheh), alsalman@squ.edu.om(A. Al-Salman), s.momani@ju.edu.jo(S. Momani)

where $\rho > 0$. When $\rho = 1$, the corresponding operator $\mu_{\Omega} = \mu_{\Omega}^{1}$ is the classical Marcinkiewicz integral operator introduced by Stein (see [7]). When $\Omega \in Lip_{\alpha}(\mathbb{S}^{n-1})$, $(0 < \alpha \le 1)$, Stein proved that μ_{Ω} is bounded on L^{p} for all $1 . Subsequently, Benedek-Calderón-Panzone proved the <math>L^{p}$ boundedness of μ_{Ω} for all $1 under the condition <math>\Omega \in C^{1}(\mathbb{S}^{n-1})$ (see [4]). Since then, the L^{p} boundedness of μ_{Ω} has been investigated by several authors. For background information, we advise readers to consult [1–3,7], among others.

Concerning the problem whether there are some L^p results on μ_{Ω}^{ρ} similar to those on μ_{Ω} when Ω satisfies only some size conditions, Ding, Lu, and Yabuta (see [5]) studied the general operator

$$\mu_{\Omega,h}^{\rho}f(x) = \left(\int_{-\infty}^{\infty} \left|2^{-\rho t} \int_{|y| \le 2^{t}} f(x-y) |y|^{-n+\rho} h(|y|) \Omega(y) dy\right|^{2} dt\right)^{\frac{1}{2}},$$
(1.3)

where *h* is a radial function on \mathbb{R}^n satisfying $h(|x|) \in l^{\infty}(L^q)(\mathbb{R}^+)$, $1 \le q \le \infty$, where the class $l^{\infty}(L^q)(\mathbb{R}^+)$ is defined by

$$l^{\infty}(L^{q})(\mathbb{R}^{+}) = \Big\{h: |h|_{l^{\infty}(L^{q})(\mathbb{R}^{+})} = \sup_{j\in\mathbb{Z}}\Big(\int_{2^{j-1}}^{2^{j}} |h(r)|^{q} \, rac{dr}{r}\Big)^{rac{1}{q}} < \infty\Big\}.$$

For $q = \infty$, we set $l^{\infty}(L^{\infty})(\mathbb{R}^+) = L^{\infty}(\mathbb{R}^+)$. It is clear that

$$l^{\infty}(L^{\infty})(\mathbb{R}^+) \subset l^{\infty}(L^r)(\mathbb{R}^+) \subset l^{\infty}(L^q)(\mathbb{R}^+) \subset l^{\infty}(L^1)(\mathbb{R}^+),$$

 $1 < q < r < \infty$. Ding, Lu, and Yabuta (see [5]) proved the following result:

Theorem 1.1 ([5]). Suppose that $\Omega \in L(\log^+ L)(\mathbb{S}^{n-1})$ is a homogeneous function of degree zero on \mathbb{R}^n satisfying (1.1) and $h(|x|) \in l^{\infty}(L^q)(\mathbb{R}^+)$ for some $1 < q \le \infty$. If $Re(\rho) = \alpha > 0$, then $\left| \mu_{\Omega,h}^{\rho} f \right|_2 \le C\alpha^{-\frac{1}{2}} |f|_2$, where C is independent of ρ and f.

In [1], Al-Salman and Al-Qassem considered the L^p boundedness of $\mu_{\Omega,h}^{\rho}$ for $p \neq 2$. which was left open in [5]. They proved the following result:

Theorem 1.2 ([1]). Suppose that $\Omega \in L(\log^+ L)(\mathbb{S}^{n-1})$ is a homogeneous function of degree zero on \mathbb{R}^n satisfying (1.1). If $h(|x|) \in l^{\infty}(L^q)(\mathbb{R}^+)$, $1 < q \leq \infty$, and $\alpha = Re(\rho) > 0$, then $\left| \mu_{\Omega,h}^{\rho} f \right|_p \leq C\alpha^{-1} |f|_p$ for all $1 , where C is independent of <math>\rho$ and f.

In light of Theorem 1.1, it is clear that the dependence of the L^p bounds on α in Theorem 1.2 is not sharp. More precisely, we have the following long standing natural open problem:

Problem:

(a) Is the power (-1/2) of α in Theorem 1.1 sharp?