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Abstract. It is well recognized the convenience of converting the linearly constrained
convex optimization problems to a monotone variational inequality. Recently, we have
proposed a unified algorithmic framework which can guide us to construct the solu-
tion methods for solving these monotone variational inequalities. In this work, we
revisit two full Jacobian decomposition of the augmented Lagrangian methods for
separable convex programming which we have studied a few years ago. In partic-
ular, exploiting this framework, we are able to give a very clear and elementary proof
of the convergence of these solution methods.
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1 Introduction

In this paper, we consider the generic convex minimization model with linear constraints:

min
x

m

∑
i=1

θi(xi)

s.t.
m

∑
i=1

Aixi = b;

xi ∈ Xi, i = 1, · · · , m,

(1.1)
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where θi : <ni → < (i = 1, · · · , m) are closed proper convex functions and they are not
necessarily smooth; Xi ⊆ <ni (i = 1, · · · , m) are closed convex sets; Ai ∈ <l×ni (i =
1, · · · , m) are given matrices; b ∈ <l is a given vector; and ∑m

i=1 ni = n. The solution set
of (1.1) is assumed to be nonempty throughout our discussion. The Lagrangian function
of the problem (1.1) is

L(x1, x2, · · · , xm, λ) =
m

∑
i=1

θi(xi)− λT
( m

∑
i=1

Aixi − b
)

, (1.2)

in which λ ∈ <` is the Lagrange multiplier. By adding a penalty term to the Lagrangian
function (1.2), we obtain its augmented Lagrangian function

Lβ(x1, · · · , xm, λ) =
m

∑
i=1

θi(xi)− λT
( m

∑
i=1

Aixi − b
)
+

β

2

∥∥∥ m

∑
i=1

Aixi − b
∥∥∥2

, (1.3)

where β > 0 is the penalty parameter for the linear constraints of (1.1). The augmented
Lagrangian method (ALM) originally proposed in [11, 13] for the problem (1.1) reads as

(xk+1
1 , · · · , xk+1

m ) = arg min
{
Lβ(x1, · · · , xm, λk)

∣∣ xi ∈ Xi, i = 1, · · · , m
}

,

λk+1 = λk − β
( m

∑
i=1

Aixk+1
i − b

)
.

(1.4)

The ALM plays a significant role in both theoretical study and algorithmic design for
various convex programming models. ALM scheme (1.4) is indeed an application of the
well-known proximal point algorithm (PPA) that can date back to the seminal work [12,
14, 15] to the dual problem of (1.1). Throughout, we call (x1, · · · , xm) and λ the primal
and dual variables, respectively.

It is well known that ADMM [3] is powerful for the problem (1.1) when m = 2. In
order to use the separability of the problem, one considers to use the direct extension of
ADMM [3] to solve (1.1) for m ≥ 3. It leads to the following recursion:

1.1 The direct extension of ADMM

The k-th iteration begins with a given (xk
2, · · · , xk

m, λk), then

xk+1
1 ∈ arg min

{
Lβ(x1, xk

2, · · · , xk
m, λk)

∣∣ x1 ∈ X1
}

,

xk+1
2 ∈ arg min

{
Lβ(xk+1

1 , x2, · · · , xk
m, λk)

∣∣ x2 ∈ X2
}

,
...

xk+1
i ∈ arg min

{
Lβ(xk+1

1 , · · · , xk+1
i−1 , xi, xk

i+1, · · · , xk
m, λk)

∣∣ xi ∈ Xi
}

,
...

xk+1
m ∈arg min

{
Lβ(xk+1

1 , · · · , xk+1
m−1, xm, λk)

∣∣ xm ∈ Xm
}

,

λk+1 = λk − β
( m

∑
i=1

Aixk+1
i − b

)
.

(1.5)


