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Abstract. In recent years, data-driven methods have been developed to learn dynam-
ical systems and partial differential equations (PDE). The goal of such work is to dis-
cover unknown physics and corresponding equations. However, prior to achieving
this goal, major challenges remain to be resolved, including learning PDE under noisy
data and limited discrete data. To overcome these challenges, in this work, a deep-
learning based data-driven method, called DL-PDE, is developed to discover the gov-
erning PDEs of underlying physical processes. The DL-PDE method combines deep
learning via neural networks and data-driven discovery of PDE via sparse regressions.
In the DL-PDE, a neural network is first trained, then a large amount of meta-data is
generated, and the required derivatives are calculated by automatic differentiation. Fi-
nally, the form of PDE is discovered by sparse regression. The proposed method is
tested with physical processes, governed by the diffusion equation, the convection-
diffusion equation, the Burgers equation, and the Korteweg-de Vries (KdV) equation,
for proof-of-concept and applications in real-world engineering settings. The proposed
method achieves satisfactory results when data are noisy and limited.

AMS subject classifications: 35E99

Key words: Data-driven discovery, machine learning, deep neural network, sparse regression,
noisy data.

∗Corresponding author. Email addresses: 390260267@pku.edu.cn (H. Xu), changhaibin@pku.edu.cn (H.
Chang), zhangdx@sustech.edu.cn (D. Zhang)

http://www.global-sci.com/cicp 698 c©2021 Global-Science Press



H. Xu, H. Chang and D. Zhang / Commun. Comput. Phys., 29 (2021), pp. 698-728 699

1 Introduction

As data acquisition and storage ability has increased, data-driven methods have been uti-
lized for solving various problems in different fields [1–4]. In recent years, data-driven
discovery of governing equations of physical problems has attracted much attention. In-
stead of building models from physical laws, the goal of such an approach is to discover
unknown physics and corresponding equations directly from limited observation data.
Substantial progress has been made in terms of proof-of-concept and preliminary appli-
cations. Among these investigations, sparse regression methods are frequently used tech-
niques, which show promise for discovering the governing partial differential equations
(PDEs) of various problems. Using sparse regression aims to identify a small number of
terms that constitute a governing equation from a predefined large candidate library, and
a parsimonious model can usually be obtained. Sparse identification of nonlinear dynam-
ics (SINDy), sequential threshold ridge regression (STRidge), and Lasso are proposed to
identify PDE from data [5–7]. Since then, a large body of extant literature has inves-
tigated data-driven discovery of governing equations using sparse regression [4, 8–19].
Despite the numerous successes achieved with sparse regression-based methods, major
challenges remain when faced with noisy data and limited data. Since numerical ap-
proximation of derivatives is requisite in these methods, the results may be unstable and
ill-conditioned when handling noisy data [20]. Total variation, polynomial interpolation,
and the integral form are utilized to handle noisy data [5,6,13]. However, these strategies
can only lessen the difficulties associated with noisy data to a certain extent.

Besides the sparse regression method, other techniques, such as Gaussian process
and neural networks, are also used for performing data-driven discovery of governing
equations. For example, Raissi et al. [21] proposed a framework that utilizes the Gaussian
process to discover governing equations. In their proposed framework, parameters of the
differential operator are turned into hyper-parameters of some covariance functions and
are learned by the maximum likelihood method. Meanwhile, the physics-informed neu-
ral network (PINN) is presented for solving forward and inverse problems of PDE [22].
In the PINN, by adding a PDE constraint term in the loss function, in addition to the
data match term, the accuracy of the results can be improved and the coefficients of the
PDE terms can be learned. Avoiding the numerical approximation of derivatives, both
the Gaussian process-based method and the neural network-based method require less
data and are less sensitive to data noise [21,22]. However, in the above-mentioned works,
the PDE of the considered problem is supposed to have a known structure and only the
coefficients of the PDE terms are learned from data, which limits its application for PDE
discovery. To overcome this limitation, Raissi [23] modified the PINN by introducing two
neural networks for approximating the unknown solution, as well as the unknown PDE.
Even though this modification enables the PINN to solve problems with unknown PDE
structures, the learned neural network approximation of the unknown PDE is a black
box, and thus lacks interpretability. Long et al. [24] employed a convolutional neural
network to identify the form of the unknown PDE. However, parsimony of the results


