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Abstract. This paper is concerned with numerical solutions of time-fractional para-

bolic equations. Due to the Caputo time derivative being involved, the solutions of
equations are usually singular near the initial time t = 0 even for a smooth setting.

Based on a simple change of variable s = tβ , an equivalent s-fractional differential

equation is derived and analyzed. Two type finite difference methods based on
linear and quadratic approximations in the s-direction are presented, respectively,

for solving the s-fractional differential equation. We show that the method based

on the linear approximation provides the optimal accuracy O(N−(2−α)) where N is
the number of grid points in temporal direction. Numerical examples for both linear

and nonlinear fractional equations are presented in comparison with L1 methods
on uniform meshes and graded meshes, respectively. Our numerical results show

clearly the accuracy and efficiency of the proposed methods.

AMS subject classifications: 35A35, 35R11, 65M12

Key words: Time-fractional differential equations, nonsmooth solution, finite difference meth-
ods, L1 approximation.

1. Introduction

Time-fractional differential equations have attracted much attention in the last two

decades since many physical models can be described more precisely in this way. Here,
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we consider the time-fractional parabolic equations in the form

Dα
t u+ Lu = f, x ∈ Ω × (0, T ] (1.1)

with the initial and boundary conditions given by

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω × [0, T ],
(1.2)

where L is a second-order linear and strongly elliptic differential operator on Ω̄. Since

we mainly focus on finite difference discretization, we simply assume that Ω = [0, b]d,

where d denotes the dimension. The Caputo fractional derivative Dα
t is defined by

Dα
t u(x, t) =

1

Γ(1− α)

∫ t

0

∂u(x, z)

∂z

1

(t− z)α
dz, 0 < α < 1, (1.3)

where Γ(·) denotes the usual Gamma function.

Numerous effort has been devoted to developing effective numerical methods and

rigorous numerical analysis for the time fractional differential equation (1.1)-(1.2).

Clearly, the accuracy of numerical methods heavily relies on the regularity of the so-

lution of the equation. Theoretical analysis based on assumption of the solution being

smooth was done by many authors for different applications and different numeri-

cal methods. Unlike regular differential equations (α = 1), the solution of the time-

fractional differential equations may not be smooth even for a smooth setting (for

source term, the boundary/initial conditions and compatibility conditions), see [5, 6,

15,16,24,28,30,36,37] for detailed discussion. For certain simple time-independent el-

liptic operator L, with a standard separation of variable, the solution of (1.1)-(1.2) can

be given [35] in terms of the expansion of eigenpairs (λk, ψk(x)) of the corresponding

steady state problem by

u(x, t) =
∞∑

k=1

[
(u0, ψk)Eα,1(−λkt

α) + Jk(t)
]
ψk(x), (1.4)

where

Jk(t) =

∫ t

0
zα−1Eα,α(−λkz

α)fk(t− z)dz,

fk(t) =

∫

Ω
f(x, t)ψk(x)dx, Eα,β(z) :=

∞∑

k=0

zk

Γ(αk + β)

defines the classical Mittag-Leffler function. More details can be found in [36]. From

(1.4) one can see that the solution has a singular layer near t = 0, in which the optimal

error estimate of the L1 scheme on a uniform temporal mesh is [14,37]

max
1≤n≤N

‖en‖ ≤ O(τα). (1.5)


