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Abstract

Optimization problems with L1-control cost functional subject to an elliptic partial

differential equation (PDE) are considered. However, different from the finite dimensional

l1-regularization optimization, the resulting discretized L1-norm does not have a decou-

pled form when the standard piecewise linear finite element is employed to discretize the

continuous problem. A common approach to overcome this difficulty is employing a nodal

quadrature formula to approximately discretize the L1-norm. In this paper, a new dis-

cretized scheme for the L1-norm is presented. Compared to the new discretized scheme for

L1-norm with the nodal quadrature formula, the advantages of our new discretized scheme

can be demonstrated in terms of the order of approximation. Moreover, finite element

error estimates results for the primal problem with the new discretized scheme for the

L1-norm are provided, which confirms that this approximation scheme will not change the

order of error estimates. To solve the new discretized problem, a symmetric Gauss-Seidel

based majorized accelerated block coordinate descent(sGS-mABCD) method is introduced

to solve it via its dual. The proposed sGS-mABCD algorithm is illustrated at two numer-

ical examples. Numerical results not only confirm the finite element error estimates, but

also show that our proposed algorithm is efficient.
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1. Introduction

In this paper, we study the following linear-quadratic elliptic PDE-constrained optimal

control problem with L1-control cost and piecewise box constraints on the control:
min

(y,u)∈Y×Uad

J(y, u) =
1

2
∥y − yd∥2L2(Ω) +

α

2
∥u∥2L2(Ω) + β∥u∥L1(Ω)

s.t. Ly = u+ yr in Ω,

y = 0 on ∂Ω,

(P)
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where Y := H1
0 (Ω), U := L2(Ω), Uad = {v(x)|a ≤ v(x) ≤ b, a.e. on Ω} ⊆ U , Ω ⊆ Rn

(n = 2 or 3) is a convex, open and bounded domain with C1,1- or polygonal boundary Γ, yd,

yr ∈ C0(Ω) ∩H1(Ω) and the parameters a ≤ 0 ≤ b and α, β > 0. Moreover the operator L is

a second-order linear elliptic differential operator. It is well-known that L1-norm could lead to

sparse optimal control, i.e. the optimal control with small support. Such an optimal control

problem (P) plays an important role for the placement of control devices [1]. In some cases, it

is difficult or undesirable to place control devices all over the control domain and one hopes to

localize controllers in small and effective regions, the L1-solution gives information about the

optimal location of the control devices.

Let us comment on known results on a-priori analysis of control constrained sparse optimal

control problems. For the study of optimal control problems with sparsity promoting terms,

as far as we know, the first paper devoted to this study is published by Stadler [1], in which

structural properties of the control variables were analyzed in the case of the linear-quadratic

elliptic optimal control problem. In 2011, a priori and a posteriori error estimates were first

given by Wachsmuth and Wachsmuth in [2] for piecewise linear control discretizations, in which

they prove the following result

∥u∗ − u∗
h∥L2(Ω) ≤ C(α−1h+ α−3/2h2). (1.1)

However, from an algorithmic point of view, the resulting discrete L1-norm:

∥uh∥L1(Ωh) :=

∫
Ωh

∣∣ n∑
i=1

uiϕi(x)
∣∣dx,

does not have a decoupled form with respect to the coefficients {ui}, where ϕi(x) are the

piecewise linear nodal basis functions which lead to its subgradient νh ∈ ∂∥uh∥L1(Ωh) will

not belong to a finite-dimensional subspace. Thus, directly solving the corresponding discrete

problem will causes many difficulties in numerical calculation. Hence, the authors introduced

an alternative discretization of the L1-norm which relies on a nodal quadrature formula:

∥uh∥L1
h(Ωh) :=

n∑
i=1

|ui|
∫
Ωh

ϕi(x)dx. (1.2)

About the approximate L1-norm, based on the error estimates of the nodal interpolation oper-

ator, it is easy to show that

0 ≤ ∥uh∥L1
h(Ωh) − ∥uh∥L1(Ωh) = O(h) (1.3)

Obviously, this quadrature incurs an additional error. However, the authors [2] proved that

this approximation does not change the order of error estimates.

In a sequence of papers [3, 4], for the non-convex case governed by a semilinear elliptic e-

quation, Casas et al. proved second-order necessary and sufficient optimality conditions. Using

the second-order sufficient optimality conditions, the authors provide error estimates of order

h w.r.t. the L∞ norm for three different choices of the control discretization (including the

piecewise constant, piecewise linear control discretization and the variational control discretiza-

tion ). It should be pointed that, for the piecewise linear control discretization case, a similar

approximation technique to the one introduced by Wachsmuth and Wachsmuth is also used for

the discretizations of the L2 norm and L1 norm of the control.


