COMMUNICATIONS IN MATHEMATICAL RESEARCH 29(3)(2013), 218–230

A Class of *-simple Type $A \omega^2$ -semigroups (I)

SHANG YU¹ AND WANG LI-MIN²

- (1. Department of Mathematics, Simao Teacher's College, Puer, Yunnan, 665000)
- (2. School of Mathematics, South China Normal University, Guangzhou, 510631)

Communicated by Du Xian-kun

Abstract: In this paper, we study *-simple type $A \omega^2$ -semigroups in which $\mathcal{D}^* = \widetilde{D}$ and $\mathcal{D}^*|_{E_S} = \mathcal{M}_d$ by the generalized Bruck-Reilly extension and obtain its structure theorem. We also obtain a criterion for isomorphisms of two such semigroups.

Key words: type A semigroup, *-simple ω^2 -semigroup, generalized Bruck-Reilly extension

2000 MR subject classification: 20M10

Document code: A

Article ID: 1674-5647(2013)03-0218-13

1 Introduction and Preliminaries

Earlier investigations in [1] studied *-bisimple type A ω^2 -semigroups whose equivalence D^* and \widetilde{D} coincide, characterizing them as the generalized Bruck-Reilly *-extensions of cancellative monoids. The results of [1] generalize those of regular bisimple ω^2 -semigroups. In this paper, as a natural follow up on these investigations, we study *-simple type A ω^2 -semigroups in which $\mathcal{D}^* = \widetilde{D}$ and $\mathcal{D}^*|_{E_S} = \mathcal{M}_d$.

The theory developed here closely parallels the one for regular simple ω^2 -semigroups. In Sections 2 and 3, it is shown that the *-simple type A ω^2 -semigroups in which $\mathcal{D}^* = \widetilde{D}$ and $\mathcal{D}^*|_{E_S} = \mathcal{M}_d$ are precisely the generalized Bruck-Reilly extensions of an ω -chain of cancellative monoids of length d. In Section 4, we obtain an isomorphism theorem for such semigroups.

We complete this section with a summary of notions of type A semigroups, the details of which can be found in [1-3].

For any semigroup S we denote by E_S the set of idempotents of S. We define a partial ordering \geq on E_S by the rule that $e \geq f$ if and only if ef = f = fe. Let $a, b \in S$ such that for all $x, y \in S^1$, ax = ay if and only if bx = by. Then a, b are said to be \mathcal{L}^* -equivalent and

Received date: Nov. 25, 2010.

Foundation item: The NSF (10901134) of China and the Science Foundation (2011Y478) of the Department of Education of Yunnan Province.

E-mail address: shangyu503@163.com (Shang Y).

written $a\mathcal{L}^*b$. Dually, $a\mathcal{R}^*b$ if for all $x, y \in S^1$, xa = ya if and only if xb = yb. If S has an idempotent e, the following characterisation is known.

Lemma 1.1^[3] Let S be a semigroup, and e be an idempotent in S. Then the following are equivalent:

- (i) $e\mathcal{L}^*a$;
- (ii) ae = a and for all $x, y \in S^1$, ax = ay implies ex = ey.

By duality, a similar condition holds for \mathcal{R}^* . A semigroup in which each \mathcal{L}^* -class and each \mathcal{R}^* -class contain an idempotent is called an abundant semigroup (see [2]). The join of the equivalence relations \mathcal{L}^* and \mathcal{R}^* is denoted by \mathcal{D}^* and their intersection by \mathcal{H}^* . Thus $a\mathcal{H}^*b$ if and only if $a\mathcal{L}^*b$ and $a\mathcal{R}^*b$. In general, $\mathcal{L}^*\circ\mathcal{R}^*\neq\mathcal{R}^*\circ\mathcal{L}^*$ and neither equals \mathcal{D}^* . Basically, $a\mathcal{D}^*b$ if and only if there exist elements $x_1, x_2, \dots, x_{2n-1}$ in S such that $a\mathcal{L}^*x_1\mathcal{R}^*x_2\mathcal{L}^*\cdots\mathcal{L}^*x_{2n-1}\mathcal{R}^*b$. Let H^* be an \mathcal{H}^* -class in a semigroup S with $e\in H^*$, where e is an idempotent in S. Then H^* is a cancellative monoid. Denote by \mathcal{R} , \mathcal{L} the left and right Green's relations respectively, on S. It is well-known that $\mathcal{L} \subseteq \mathcal{L}^*$, $\mathcal{R} \subseteq \mathcal{R}^*$, $\mathcal{D} \subseteq \mathcal{D}^*$, $\mathcal{H} \subseteq \mathcal{H}^*$ for a semigroup S and if a, b are regular elements of S, then $a\mathcal{L}^*b$ ($a\mathcal{R}^*b$) if and only if $a\mathcal{L}b$ ($a\mathcal{R}b$).

To avoid ambiguity we at times denote a relation \mathcal{K} on S by $\mathcal{K}(S)$. The following notation will be used. An \mathcal{L}^* -class containing an element $a \in S$ is denoted by L_a^* . Similarly, R_a^* is an \mathcal{R}^* -class with an element $a \in S$. Let S be a semigroup and I an ideal of S. Then I is called a *-ideal if $L_a^* \subseteq I$ and $R_a^* \subseteq I$ for all $a \in I$. The smallest *-ideal containing a is the principal *-ideal generated by a and is denoted by $J^*(a)$. For a, b in S, $a\mathcal{J}^*b$ if and only if $J^*(a) = J^*(b)$. The relation \mathcal{J}^* contains \mathcal{D}^* . A semigroup S is said to be *-simple if the only *-ideal of S is itself. Clearly, a semigroup is *-simple if all its elements are \mathcal{J}^* -related. Let S be a semigroup with a semilattice E of idempotents. Then S is called a right adequate semigroup if each \mathcal{L}^* -class of S contains a unique idempotent. Dually, we have the notion of a left adequate semigroup. A semigroup which is both left and right adequate is called an adequate semigroup. In an adequate semigroup each \mathcal{L}^* -class and each \mathcal{R}^* -class contain unique idempotent. For an element x of an adequate semigroup S, $x^*(x^+)$ denotes the unique idempotent in the \mathcal{L}^* -class L_x^* (\mathcal{R}^* -class R_x^*) of x. A right (left) adequate semigroup S is called a right (left) type A semigroup if $ea = a(ea)^*$ ($ae = (ae)^+a$) for all elements a in S and all idempotents e in S. An adequate semigroups S is type A if it is both right and left type A.

Lemma 1.2^[4] Let S be an arbitrary semigroup. Then the following are equivalent:

- (i) For all idempotents e and f of S the element ef is regular;
- (ii) $\langle E_S \rangle$ is a regular subsemigroup;
- (iii) Reg(S) is a regular subsemigroup.

Recall that $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is a strong semilattice of the semigroups S_{α} when Y is a semilattice, $\{S_{\alpha} : \alpha \in Y\}$ is a disjoint family of semigroups and for $\alpha, \beta \in Y$ with $\alpha \geq \beta$ there are homomorphisms $\phi_{\alpha,\beta} : S_{\alpha} \to S_{\beta}$ satisfying