A New Proof of Diophantine Equation

$$\binom{n}{2} = \binom{m}{4}^*$$

Zhu Hui-lin^{1,2}

(1. School of Mathematics, Shandong University, Jinan, 250100) (2. School of Mathematical Sciences, Xiamen University, Xiamen, Fujian, 361005)

Communicated by Liu Jian-ya

Abstract: By using algebraic number theory and *p*-adic analysis method, we give a new and simple proof of Diophantine equation $\binom{n}{2} = \binom{m}{4}$.

Key words: binomial Diophantine equation, fundamental unit, factorization, p-adic analysis method

2000 MR subject classification: 11D25, 11D45

Document code: A

Article ID: 1674-5647(2009)03-0282-07

1 Introduction

In the section D3 of [1], there is a famous problem: does

$$\binom{n}{2} = \binom{m}{4} \tag{1.1}$$

have any other nontrivial solutions besides (m,n) = (10,21)? In 1995, Pinter^[2], and in 1996, de Weger^[3] solved this problem, respectively by using the package KANT and the Baker-Davenport reduction algorithm, and the transcendence result of Baker and Wüstholz that yield absolute upper bounds for m, n. In 1997, Stroeker and de Weger^[4], and in 2000, Hajdu and Pinter^[5] resolved it respectively by using linear forms in elliptic logarithms, and using Pari and the program package SIMATH. In 2004, Li and Cao^[6] gave an elementary solution of this problem by using difference recursion sequence method. In this note, we give a new and simple proof by using algebraic number theory and p-adic analysis method.

2 Main Theorem and Proof

Theorem 2.1 All the integral points of Diophantine equation (1.1) are (m, n) = (-7, -20), (-7, 21), (-3, -5), (-3, 6), (-1, -1), (-1, 2), (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1),

Foundation item: The Fund (0000X08103) of Xiamen University.

^{*}Received date: Oct. 16, 2008.

(4,-1), (4,2), (6,-5), (6,6), (10,-20), (10,21).

Proof. Equation (1.1) is equivalent to

$$\frac{n(n-1)}{2!} = \frac{m(m-1)(m-2)(m-3)}{4!},$$

that is,

$$(m^2 - 3m + 1)^2 + 2 = 3(2n - 1)^2.$$

We factorize the above equation in the quadratic algebraic field $Q(\sqrt{-2})$ (see [7]–[9]). Since the class-number of the ring of integer is 1 and the unit roots of $Q(\sqrt{-2})$ are ± 1 , then

$$(m^2 - 3m + 1) \pm \sqrt{-2} = \pm (1 + \sqrt{-2})A^2,$$

$$(2m - 3)^2 \pm (1 + \sqrt{-2})(2A)^2 = 5 \pm 4\sqrt{-2},$$

where A, A' are two conjugate algebraic integers and

$$2n - 1 = AA'.$$

Put

$$A_1 = 2A$$
.

Then

$$(2m-3)^2 - (1+\sqrt{-2})A_1^2 = 5 \pm 4\sqrt{-2}, \tag{2.1}$$

or

$$(2m-3)^2 + (1+\sqrt{-2})A_1^2 = 5 \pm 4\sqrt{-2}. (2.2)$$

Case 1 First, we solve equation (2.1). Let

$$\rho = \sqrt{-2}$$
.

Write (2.1) as

$$(2m-3)^2 - (1+\rho)A_1^2 = 5 \pm 4\rho. \tag{2.3}$$

Put

$$\theta = \sqrt{1 + \rho}$$

Then θ is an algebraic integer in a totally complex quartic field $\mathbf{Q}(\theta)$ and satisfies

$$\theta^2 = 1 + \rho$$
.

From [10], we know that $\{1, \theta, \rho, \theta\rho\}$ is a basis of $\mathbf{Q}(\theta)$. $\{\theta, -\theta, \theta' = \sqrt{1-\rho}, -\theta'\}$ denotes all conjugates of θ in $\mathbf{Q}(\theta)$.

Write

$$\alpha = (a, b, c, d)$$

as a shorthand for

$$\alpha = a + b\theta + c\rho + d\theta\rho.$$

The conjugates of α are

$$\alpha_{-} = a - b\theta + c\rho - d\theta\rho = (a, -b, c, -d),$$

$$\alpha' = a + b\theta' - c\rho - d\theta'\rho,$$

$$\alpha'_{-} = a - b\theta' - c\rho + d\theta'\rho.$$