
Ann. Appl. Math.
doi: 10.4208/aam.OA-2021-0003

Vol. 37, No. 2, pp. 131-290
May 2021

Effective Maximum Principles for Spectral

Methods

Dong Li∗

Department of Mathematics and SUSTech International Center for
Mathematics, Southern University of Science and Technology,
Shenzhen 518055, Guangdong, China

Received 2 March 2021; Accepted (in revised version) 15 May 2021

Abstract. Many physical problems such as Allen-Cahn flows have natural max-
imum principles which yield strong point-wise control of the physical solutions in
terms of the boundary data, the initial conditions and the operator coefficients.
Sharp/strict maximum principles insomuch of fundamental importance for the
continuous problem often do not persist under numerical discretization. A lot of
past research concentrates on designing fine numerical schemes which preserves
the sharp maximum principles especially for nonlinear problems. However these
sharp principles not only sometimes introduce unwanted stringent conditions
on the numerical schemes but also completely leaves many powerful frequency-
based methods unattended and rarely analyzed directly in the sharp maximum
norm topology. A prominent example is the spectral methods in the family of
weighted residual methods.

In this work we introduce and develop a new framework of almost sharp max-
imum principles which allow the numerical solutions to deviate from the sharp
bound by a controllable discretization error: we call them effective maximum
principles. We showcase the analysis for the classical Fourier spectral meth-
ods including Fourier Galerkin and Fourier collocation in space with forward
Euler in time or second order Strang splitting. The model equations include
the Allen-Cahn equations with double well potential, the Burgers equation and
the Navier-Stokes equations. We give a comprehensive proof of the effective
maximum principles under very general parametric conditions.
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1 Introduction

In solving physical problems such as Allen-Cahn flows in interfacial dynamics, the
maximum principle plays an important role since it gives strong point-wise control
of the physical solutions in terms of the boundary data, the initial conditions and
the operator coefficients. For practical numerical simulations, it is often the case
that sharp/strict maximum principles for the continuous problem often do not per-
sist under numerical discretization. A lot of past research is centered on designing
fine numerical schemes which preserves the maximum in a sharp way especially for
nonlinear problems. For linear parabolic equations, it is well known that central
finite difference in space with backward Euler time stepping can preserve the sharp
maximum principle (cf. Chapter 9 of [5] for a textbook analysis of 1D homogeneous
heat equation). This is also the case if one employs lumped mass linear finite element
in space using acute simplicial triangulation. Although preserving the sharp max-
imum principle is highly desirable for numerical simulations, these often introduce
unwanted stringent conditions on the numerical schemes. Moreover it completely
leaves out many powerful L2-based methods unattended and rarely analyzed di-
rectly in the sharp maximum norm topology. In this respect a prominent example
is the spectral methods in the family of weighted residual methods. In this work
we introduce and develop a new framework of almost sharp maximum principles
which allow the numerical solutions to deviate from the sharp bound by a control-
lable discretization error: we call them effective maximum principles. Our main
models are Allen-Cahn equations in physical dimensions d≤3, but we also discuss
related models such as Burgers equations, Navier-Stokes equations. All these will
be discussed in this introduction.

We begin by considering the Allen-Cahn equation in physical dimensions d=
1,2,3:
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periodic boundary conditions,

(1.1)

where u is a scalar function which typically represents the concentration of one of the
two metallic components of the alloy. For simplicity we consider the periodic bound-
ary condition and assume the function to have period 1 in each spatial coordinate
axis. The parameter ν > 0 controls the interfacial width which is small compared
with the system size under study. The nonlinear term has the usual double well


