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Abstract. The Camassa—Holm-Kadomtsev—Petviashvili-I equation (CH-KP-I)
is a two dimensional generalization of the Camassa-Holm equation (CH). In this
paper, we prove transverse instability of the line solitary waves under periodic
transverse perturbations. The proof is based on the framework of [18]. Due to
the high nonlinearity, our proof requires necessary modification. Specifically, we
first establish the linear instability of the line solitary waves. Then through an
approximation procedure, we prove that the linear effect actually dominates the
nonlinear behavior.
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1 Introduction

Surface water wave is too much of a monster to tame. Thus various asymptotic
models have been developed to simplify it. In the realm of shallow water waves,
these models include the KdV equation [14], the Camassa—Holm equation [4,7], etc..
They are all unidirectional approximation models, which means that we assume the
surface elevation is uniform in the transverse direction. A key observation is that
these models all admit Hamiltonian structure, which indicates that it is reasonable
to expect a systematic way to deal with a class of problems based on that structure.
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One problem focuses on the orbital stability around solitary waves—traveling waves
which decay to zero at infinity. Roughly speaking, we want to know if the solution
consistently stays in the neighborhood of a solitary wave and its translation when
its initial data does. A naive thinking why it is true is that the solitary wave
holds the least Lagrangian action energy, so the object around it is “willing” to
evolve like that. One of the universal treatments is by center manifold theory. The
center manifold theory is an equivalent but more algebraic form of the original
problem (e.g., under Fourier transform), based on spectral decomposition. The
“finite dimension” version of the spectral decomposition is purely algebraic in taste,
while its corresponding “infinite” counterpart has topology coming into play as a
role of approximation to mimic the world of “finite”. This thought works well for
some class of operators (e.g., normal operators), but not some others. For equations
preserving the Hamiltonian structure, the linearized operator around a solitary wave
has essential spectrum on the imaginary axis, which corresponds to center manifold
part that is hard to deal with. Another treatment is by the Lyaponov method,
which is by Benjamin [2] and Bona [3]|, and later generalized to handle a class
of Hamiltonian models by Weinstein [22] and Grillakis—Shatah-Strauss (GSS) [11].
They claim that knowing the information from the Lagrangian action energy allows
one to determine the orbital stability and instability. The gain of their method
is that instead of working with the original linearized operator, one just needs to
study the spectrum of a rather transparent self-adjoint operator. The trade-off is
that it is required to carefully weave the domain of the energy functional to balance
between the complexity and solvability (due to loss of information from the original
problem).

Besides the unidirectional models like KAV and CH, one can also allow trans-
verse effect into modeling, leading to two-dimensional generalizations of the scalar
models. Since the transverse perturbation is weak, it is natural to ask whether these
models retain transverse stability, i.e., the unidirectional solitary waves remain sta-
ble under the two-dimensional flow. However, the answer to this question is much
more involved. The first result is by Alexander—Pego—Sachs [1] on the Kadomtsev—
Petviashvili (KP) equation

(Ut Uy + Uy ) g — O Uy =0,

which is a two-dimensional version of the KdV equation. The coefficient o takes
values in {—1,1} representing the strength of capillarity relative to the gravitational
forces. The weak surface tension case corresponds to =1 and is referred to as the
KP-I equation; and the strong surface tension leads to the so-called KP-II equation
with c=—1. In [1], the authors state that the KP-I model is linearly stable, while the
KP-II model is linearly unstable. The transition from linear instability to nonlinear



