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Abstract

We propose a novel algorithm, based on physics-informed neural networks (PINNs) to

efficiently approximate solutions of nonlinear dispersive PDEs such as the KdV-Kawahara,

Camassa-Holm and Benjamin-Ono equations. The stability of solutions of these dispersive

PDEs is leveraged to prove rigorous bounds on the resulting error. We present several

numerical experiments to demonstrate that PINNs can approximate solutions of these

dispersive PDEs very accurately.
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1. Introduction

Deep learning i.e., the use of deep neural networks for regression and classification, has been

very successful in many different contexts in science and engineering [30]. These include image

analysis, natural language understanding, game intelligence and protein folding. As deep neural

networks are universal function approximators, it is natural to employ them as ansatz spaces

for solutions of ordinary and partial differential equations, paving the way for their successful

use in scientific computing. A very incomplete list of examples where deep learning is used

for the numerical solutions of differential equations includes the solution of high-dimensional

linear and semi-linear parabolic partial differential equations [10, 14] and references therein,

and for many-query problems such as those arising in uncertainty quantification (UQ), PDE

constrained optimization and (Bayesian) inverse problems. Such problems can be recast as

parametric partial differential equations and the use of deep neural networks in their solution is

explored for elliptic and parabolic PDEs in [23,44], for transport PDEs [25] and for hyperbolic

and related PDEs [6,35–37], and as operator learning frameworks in [2,29,31,33] and references

therein. All the afore-mentioned methods are of the supervised learning type [13] i.e., the

underlying deep neural networks have to be trained on data, either available from measurements

or generated by numerical simulations.
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However, there are several interesting problems for PDEs where generating training data

might be very expensive. A different strategy might be relevant for such problems, namely

the so-called Physics informed neural networks (PINNs) which collocate the PDE residual on

training points of the approximating deep neural network, thus obviating the need for gener-

ating training data. Proposed originally in [7, 26, 27], PINNs have been revived and developed

in significantly greater detail recently in the pioneering contributions of Karniadakis and col-

laborators. PINNs have been successfully applied to simulate a variety of forward and inverse

problems for PDEs, see [5, 18,19,32,34,38,41,45,50–52,55] and references therein.

In a recent paper [40], the authors obtain rigorous estimates on the error due to PINNs for

the forward problem for a variety of linear and non-linear PDEs, see [39] for similar results on

inverse problems and [54] for a different perspective on error estimates for PINNs. Following [40],

one can expect that PINNs could be efficient at approximating solutions of nonlinear PDEs as

long as classical solutions to such PDEs exist and are stable in a suitable sense. So far, PINNs

have only been proposed and tested for a very small fraction of PDEs. It is quite natural to

examine whether they can be efficient at approximating other types of PDEs and in particular,

if the considerations of [40] apply to these PDEs, then can one derive rigorous error estimates

for PINNs?

In this paper, we investigate the utility of PINNs for approximately a large class of PDEs

which arises in physics i.e., non-linear dispersive equations that model different aspects of

shallow water waves [28]. These include the famous Korteweg-De Vries (KdV) equation and

its high-order extension, the so-called Kawahara equation, the well-known Camassa-Holm type

equations and the Benjamin-Ono equations. All these PDEs have several common features,

namely

• They model dispersive effects in shallow-water waves.

• The interesting dynamics of these equations results from a balance between non-linearity

and dispersion.

• They are completely integrable and contain interesting structures such as interacting

solitons in their solutions.

• Classical solutions and their stability have been extensively investigated for these equa-

tions.

• Standard numerical methods, such as finite-difference [4,8,15,16,21,53] and finite-element

[9, 22] for approximating these equations can be very expensive computationally. In par-

ticular, it can be very costly to obtain low errors due to the high-order (or non-local)

derivatives in these equations leading to either very small time-steps for explicit methods

or expensive non-linear (or linear) solvers for implicit methods.

Given these considerations, it is very appealing to investigate if PINNs can be success-

fully applied for efficiently approximating these nonlinear dispersive PDEs. To this end, we

adapt the PINNs algorithm to this context in this paper and prove error estimates for PINNs,

leveraging the stability of underlying classical solutions into error bounds. Moreover, we per-

form several numerical experiments for the KdV, Kawahara, generalized Camassa-Holm and

Benjamin-Ono equations to ascertain that PINNs can indeed approximate dispersive equations

to high-accuracy, at low computational cost.


