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Abstract

This paper discusses a numerical method for computing the evolution of large inter-

acting system of quantum particles. The idea of the random batch method is to replace

the total interaction of each particle with the N − 1 other particles by the interaction with

p ≪ N particles chosen at random at each time step, multiplied by (N − 1)/p. This re-

duces the computational cost of computing the interaction potential per time step from

O(N2) to O(N). For simplicity, we consider only in this work the case p = 1 — in other

words, we assume that N is even, and that at each time step, the N particles are orga-

nized in N/2 pairs, with a random reshuffling of the pairs at the beginning of each time

step. We obtain a convergence estimate for the Wigner transform of the single-particle

reduced density matrix of the particle system at time t that is both uniform in N > 1 and

independent of the Planck constant h̵. The key idea is to use a new type of distance on

the set of quantum states that is reminiscent of the Wasserstein distance of exponent 1 (or

Monge-Kantorovich-Rubinstein distance) on the set of Borel probability measures on R
d

used in the context of optimal transport.
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1. Introduction

Consider the quantum Hamiltonian for N identical particles with unit mass located at

positions x1,⋯, xN ∈Rd:

HN ∶=
N

∑
m=1

−1
2
h̵2∆xm

+ 1

N − 1 ∑
1≤l<n≤N

V (xl − xn) , (1.1)

where h̵ is the reduced Planck constant. The N - particles in this system interact via a binary

(real-valued ) potential V assumed to be even, bounded and sufficiently regular (at least of class
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C1,1 on Rd). The coupling constant 1
N−1

is chosen in order to balance the summations in the

kinetic energy (involving N terms) and in the potential energy (involving 1
2
N(N − 1) terms).

We seek to compute the solution ΨN ≡ ΨN(t, x1,⋯, xN ) ∈C of the Schrödinger equation

ih̵∂tΨN(t, x1,⋯, xN ) = HNΨN(t, x1,⋯, xN ) , ΨN ∣t=0 = Ψ
in
N (1.2)

where t ≥ 0 is the time while xm ∈ Rd is the position of the mth particle. When solving (1.2),

the computation is exceedingly expensive due to the smallness of h̵ which demands small time

steps ∆t and small mesh sizes of order h̵ for the convergence of the numerical scheme, due to the

oscillation in the wave function ΨN with frequency of order 1/h̵ (see [2,18]). On top of this, any

numerical scheme for (1.2) requires computing, at each time step, the sum of the interaction

potential for each particle pair in the N -particle system, i.e. the sum of 1
2
N(N − 1) terms.

For large values of N , the cost of this computation, which is of order O(N2), may become

significant at each time step. The purpose of the Random Batch Method (RBM) described

below is precisely to reduce significantly the computational cost of computing the interacting

potential from O(N2) to O(N).
Throughout this paper, we assume for simplicity that N ≥ 2 is an even integer. Let

σ1, σ2,⋯, σj ,⋯ be a random sequence of mutually independent permutations distributed u-

niformly in SN . Each permutation σ ∈SN defines a partition of {1,⋯,N} into N/2 batches of

two indices (pairs) as follows:

{1,⋯,N} =
N/2

∐
k=1

{σ(2k − 1), σ(2k)}.

Pick a time step ∆t > 0, set

Tt(l, n) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if {l, n} = {σ[ t
∆t
]+1(2k−1), σ[ t

∆t
]+1(2k)} for some k = 1,⋯, N

2
,

0 otherwise,

and consider the time-dependent Hamiltonian

HN(t) ∶=
N

∑
m=1

−1
2
h̵2∆xm

+ ∑
1≤l<n≤N

Tt(l, n)V (xl − xn). (1.3)

In other words, at each time step, the particle labels m = 1,⋯,N are reshuffled randomly, then

grouped pairwisely, and the potential applied to the mth particle by the system of N − 1 other

particles is replaced with the interaction potential of that particle with the other — only one

in this case — particle in the same group (batch).

The motivation of the RBM is that the computation of the solution Ψ̃N ∈ C of the time-

dependent, random batch Schrödinger equation

ih̵∂tΨ̃N(t, x1,⋯, xN ) = HN(t)Ψ̃N(t, x1,⋯, xN ) , Ψ̃N ∣t=0 = Ψ̃
in
N (1.4)

is much less costly than computing the solution ΨN of the N -body Schrödinger (1.2) for large

values of N . Clearly, for each time step the cost of computing the interaction potential is

reduced from O(N2) to O(N). We remark that the computational cost of reshuffling the N

labels is O(N) by Durstenfeld’s algorithm [11]. Of course, one needs to prove that (1.4) is a

“good approximation of ΨN” for a sufficiently small time-step ∆t.

Our goal in the present paper is to show that the RBM converges in some sense as ∆t → 0,

with an error estimate that is both

(a) independent of N , and

(b) uniform in h̵ ∈ (0,1).


