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Abstract. A fundamental task in phase retrieval is to recover an unknown
signal x∈Rn from a set of magnitude-only measurements yi=|〈ai,x〉|, i=1,··· ,m.
In this paper, we propose two novel perturbed amplitude models (PAMs) which
have a non-convex and quadratic-type loss function. When the measurements
ai∈Rn are Gaussian random vectors and the number of measurements m≥Cn,
we rigorously prove that the PAMs admit no spurious local minimizers with
high probability, i.e., the target solution x is the unique local minimizer (up to
a global phase) and the loss function has a negative directional curvature around
each saddle point. Thanks to the well-tamed benign geometric landscape, one
can employ the vanilla gradient descent method to locate the global minimizer
x (up to a global phase) without spectral initialization. We carry out extensive
numerical experiments to show that the gradient descent algorithm with random
initialization outperforms state-of-the-art algorithms with spectral initialization
in empirical success rate and convergence speed.

AMS subject classifications: 94A12, 65K10, 49K45

Key words: Phase retrieval, landscape analysis, non-convex optimization.

1 Introduction

∗Emails: jfcai@ust.hk (J. Cai), menghuang@ust.hk (M. Huang), lid@sustech.edu.cn (D. Li),
yangwang@ust.hk (Y. Wang)



438 J. Cai, M. Huang, D. Li and Y. Wang / Ann. Appl. Math., 37 (2021), pp. 437-512

1.1 Background

The basic amplitude model for phase retrieval can be written as

yj = |〈aj,x〉|, j=1,··· ,m,

where aj∈Rn, j=1,··· ,m are given vectors and m is the number of measurements.
The goal is to recover the unknown signal x ∈ Rn based on the measurements
{(aj,yj)}mj=1. This problem arises in many fields of science and engineering such
as X-ray crystallography [16, 24], microscopy [23], astronomy [7], coherent diffrac-
tive imaging [15,28] and optics [34] etc. In practical applications due to the physical
limitations optical detectors can only record the magnitude of signals while losing
the phase information. Despite its simple mathematical formulation, it has been
shown that reconstructing a finite-dimensional discrete signal from the magnitude
of its Fourier transform is generally an NP-complete problem [27].

Many algorithms have been designed to solve the phase retrieval problem, which
can be categorized into convex algorithms and non-convex ones. The convex algo-
rithms usually rely on a “matrix-lifting” technique, which lifts the phase retrieval
problem into a low rank matrix recovery problem. By using convex relaxation one
can recast the matrix recovery problem as a convex optimization problem. The
corresponding algorithms include PhaseLift [2, 4], PhaseCut [33] etc. It has been
shown [2] that PhaseLift can achieve the exact recovery under the optimal sampling
complexity with Gaussian random measurements.

Although convex methods have good theoretical guarantees of convergence, they
tend to be computationally inefficient for large scale problems. In contrast, many
non-convex algorithms bypass the lifting step and operate directly on the lower-
dimensional ambient space, making them much more computationally efficient.
Early non-convex algorithms were mostly based on the technique of alternating
projections, e.g., Gerchberg-Saxton [14] and Fineup [9]. The main drawback, how-
ever, is the lack of theoretical guarantee. Later Netrapalli et al. [25] proposed the
AltMinPhase algorithm based on a technique known as spectral initialization. They
proved that the algorithm linearly converges to the true solution with O(nlog3n)
resampling Gaussian random measurements. This work led further to several other
non-convex algorithms based on spectral initialization. A common thread is first
choosing a good initial guess through spectral initialization, and then solving an
optimization model through gradient descent. Two widely used optimization esti-
mators are the intensity-based loss

min
z∈Rn

F (z)=
m∑
j=1

(
|〈aj,z〉|2−y2j

)2
; (1.1)


