Self-Similar Solutions of Leray's Type for Compressible Navier-Stokes Equations in Two Dimension

Xianpeng Hu*

Department of Mathematics, City University of Hong Kong, Hong Kong, SAR, China.

Received 2 January 2022; Accepted 13 January 2022

Abstract. We study the backward self-similar solution of Leray's type for compressible Navier-Stokes equations in dimension two. The existence of weak solutions is established via a compactness argument with the help of an higher integrability of density. Moreover, if the density belongs to $L^{\infty}(\mathbb{R}^2)$ and the velocity belongs to $L^2(\mathbb{R}^2)$, the solution is trivial; that is $(\rho, \mathbf{u}) = 0$.

AMS subject classifications: 35A05, 76A10, 76D03 **Key words**: Navier-Stokes equations, self-similar solutions, compressible.

1 Introduction

This work concerns the backward self-similar solution of Leray's type for compressible isentropic Navier-Stokes equations with a positive number *M* in \mathbb{R}^n as the adiabatic constant $\gamma > \frac{n}{2}$

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho \mathbf{u}) = 0, \\ \partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) - \mu \Delta \mathbf{u} - \xi \nabla \operatorname{div} \mathbf{u} + M \nabla \rho^{\gamma} = 0, \\ (\rho, \mathbf{u})|_{t=0} = (\rho_0, \mathbf{u}_0), \end{cases}$$
(1.1)

where $\mu > 0$, $\xi \in \mathbb{R}$ with $\mu + \xi > 0$, ρ and **u** stand for the density and velocity of the flow, respectively. The positive constant *M* in (1.1) is the squared inverse of

^{*}Corresponding author. *Email address:* xianpehu@cityu.edu.hk (X. Hu)

the Mach number. The weak solution of (1.1) in \mathbb{R}^n had been established first by Lions [15] for $\gamma \ge \frac{3}{2}$ as n = 2 and $\gamma \ge \frac{9}{5}$ as n = 3, and later extended by Feireisl *et al.* [6] to allow $\gamma > \frac{n}{2}$ in the Leray sense, see also [21] for $\gamma = 1$ in dimension two and [1] for the general pressure in this direction.

Definition 1.1. A couple (ρ, \mathbf{u}) with $\rho \in L^{\infty}(0,T;L^{\gamma}(\mathbb{R}^n))$ and $\nabla \mathbf{u} \in L^2((0,T) \times \mathbb{R}^n)$ is said to be a renormalized weak solution to (1.1) with finite energy if (ρ, \mathbf{u}) satisfies the following:

- The kinetic energy is bounded, i.e., $\rho |\mathbf{u}|^2 \in L^{\infty}(0,T;L^1(\mathbb{R}^n))$. The density function is nonnegative, i.e., $\rho \ge 0$.
- The momentum equation holds true in the sense of distributions.
- The identity

$$\partial_t b(\rho) + \operatorname{div}(\mathbf{u}b(\rho)) = (b(\rho) - b'(\rho)\rho)\operatorname{div}\mathbf{u}$$
(1.2)

holds true in the sense of distributions for any function $b(t) \in C([0,\infty) \cap C^1(\mathbb{R}^+)$ such that $b(t) - b'(t)t \in C([0,\infty))$ is bounded on $[0,\infty)$.

• The global energy inequality

$$E(\rho(t),\mathbf{u}(t)) + \int_0^t \int_{\mathbb{R}^n} \left(\mu |\nabla \mathbf{u}|^2 + \xi |\operatorname{div} \mathbf{u}|^2\right) dx ds \leq E(\rho_0,\mathbf{u}_0)$$
(1.3)

holds true with

$$E(\rho, \mathbf{u}) = \begin{cases} \frac{1}{2} \|\rho\| \mathbf{u}\|^2 \|_{L^1(\mathbb{R}^n)} + \frac{M}{\gamma - 1} \int_{\mathbb{R}^n} \rho^{\gamma} dx, & \text{if } \gamma > 1, \\ \frac{1}{2} \|\rho\| \mathbf{u}\|^2 \|_{L^1(\mathbb{R}^n)} + M \int_{\mathbb{R}^n} \rho \ln(1 + \rho) dx & \text{if } \gamma = 1. \end{cases}$$

It is worth noticing that a number of efforts have been paid on the existence of weak solutions for both the time-discretized and the steady counterparts of (1.1) as $\gamma \in [1, \frac{n}{2}]$, see for instance [4, 12, 13, 19]. For the time-discretized version of (1.1), the concentration-cancellation occurs in dimension two (see [15, Section 6.6]) and in dimension three as $\gamma > 1$ (see [20]); while the concentration set has been verified to be $(\mathcal{H}^1, 1)$ rectifiable in dimension three as $\gamma = 1$ in [20], where \mathcal{H}^1 stands for the one dimensional Hausdorff measure. For the steady version of (1.1) as $\gamma = 1$, the concentration cancellation in dimension two has been verified in the work [7] due to a potential type estimate of the density (see [7, Lemma 3.1]), also see [14, 17, 22, 23] for the most recent improvement along this direction in dimension three. For time-dependent version (1.1), in [10] the author considered the