A three-dimensional model of $S L(2, \mathbb{R})$ and the hyperbolic pattern of $S L(2, \mathbb{Z})$

Yoichi Maeda
maeda@tokai-u.jp
Department of Mathematics, School of Science
Tokai University
Kitakaname 4-1-1, Hiratsuka, Kanagawa, 259-1292
Japan

Abstract

The special linear group $S L(2, \mathbb{R})$, the group of 2×2 real matrices with determinant one, is one of the most important and fundamental mathematical objects not only in mathematics but also in physics. In this paper, we propose a three-dimensional model of $S L(2, \mathbb{R})$ in \mathbb{R}^{3}, which is realized by embedding $S L(2, \mathbb{R})$ into the unit 3 -sphere. In this model, the set of symmetric matrices of $S L(2, \mathbb{Z})$ forms a hyperbolic pattern on the unit disk, like the islands floating on the sea named $S L(2, \mathbb{R})$. The structure of this hyperbolic pattern is described in the upper half-plane H. The upper half-plane H also enables us to generate symmetric matrices of $\operatorname{SL}(2, \mathbb{R})$ with three circles. Furthermore, the well-known fact $H=S L(2, \mathbb{R}) / S O(2)$ is visualized as S^{1} fibers of Hopf fibration in the unit 3 -sphere. With this three-dimensional model in \mathbb{R}^{3}, we can have a concrete image of $S L(2, \mathbb{R})$ and its noncommutative group structure. This kind of visualization might bring great benefits for the readers who have background not only in mathematics, but also in all areas of science.

1 Introduction

The purpose of this paper is to propose a three-dimensional model of $S L(2, \mathbb{R})$ in \mathbb{R}^{3}. The special linear group $S L(2, \mathbb{R})$, the group of 2×2 real matrices with determinant one, is one of the most important and fundamental mathematical objects not only in mathematics (see, [7, 9, 10]) but also in physics (see, [1,5]). Nevertheless, it is difficult for us to grasp the whole image of $S L(2, \mathbb{R})$ and its noncommutative group structure. The three-dimensional model of $S L(2, \mathbb{R})$ is realized by embedding $S L(2, \mathbb{R})$ into the unit 3 -sphere. By the stereographic projection from the unit 3 -sphere into \mathbb{R}^{3}, we can visualize every element in $S L(2, \mathbb{R})$ as a point in \mathbb{R}^{3}. In this three-dimensional model, the set of symmetric matrices of $S L(2, \mathbb{Z})$ forms a hyperbolic pattern on the unit disk as shown in Figure 1. This hyperbolic pattern is regarded as a visualization of the well-known fact $H=S L(2, \mathbb{R}) / S O(2)$, where H is the hyperbolic plane and $S O(2)$ is the special orthogonal group in dimension 2.

Figure 1: Hyperbolic pattern of $S L(2, \mathbb{Z})$.

In Section 2, we construct the three-dimensional model of $S L(2, \mathbb{R})$ in \mathbb{R}^{3}. In Section 3, we focus on the hyperbolic pattern of the set of symmetric matrices of $S L(2, \mathbb{Z})$. Finally, the well-known fact $H=S L(2, \mathbb{R}) / S O(2)$ is visualized as S^{1} fibers of Hopf fibration (see, [3] pp.320-323, [4] pp. 298-305) in the model in Section 4.

2 Three-dimensional model of $S L(2, \mathbb{R})$

In this section, we propose a three-dimensional model of $S L(2, \mathbb{R})$. The real special linear group

$$
S L(2, \mathbb{R})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, \mathbb{R}) \right\rvert\, a d-b c=1\right\}
$$

is embedded into the three-dimensional unit sphere

$$
S^{3}=\left\{\left.(u, v) \in \mathbb{C}^{2}| | u\right|^{2}+|v|^{2}=1\right\} .
$$

To see this, let C_{0} be a great circle in S^{3} defined by

$$
C_{0}=\left\{\left(0, e^{i \theta}\right) \in S^{3} \mid \theta \in[0,2 \pi)\right\} .
$$

