Ann. of Appl. Math. **34**:3(2018), 244-262

THREE KIRCHHOFFIAN INDICES OF THE CACTUS GRAPHS^{*†}

Ailian Chen[†], Minyin Yang

(College of Math. and Computer Science, Fuzhou University, Fuzhou 350116, Fujian, PR China)

Abstract

In this paper we give six explicit formulae to compute the Kirchhoff index, the multiplicative degree-Kirchhoff index and the additive degree-Kirchhoff index of the k-cactus chain and the cactus graph which can be obtained from a k-cactus chain by expanding each of the cut-vertices to a cut edge.

Keywords polyphenyl chain; cactus graph; Kirchhoff index; multiplicative degree-Kirchhoff index; additive degree-Kirchhoff index

2000 Mathematics Subject Classification 05C12

1 Introduction

The objects nowadays known as cactus appeared in the scientific literature more than half a century ago. Motivated by papers of Husimi [28] and Riddell [41], [44] dealt with cluster integrals in the theory of condensation in statistical mechanics. Besides statistical mechanics, where cacti and their generalizations serve as simplified models of real lattices [36, 42], the concept has also found applications in the theory of electrical and communication networks [56] and in chemistry [25,55]. Many topological indices have been studied for these structures, including the matching and independence polynomials [4, 16], the Hosoya indices [1], π -electron energy [52], the Hosoya polynomials [32], and the subtree numbers [50].

A cactus graph G is a connected graph in which each edge lies on at most one cycle. Therefore, each block in G is either an edge or a cycle. A k-cactus is a cactus in which each block is a k-cycle. A k-cactus chain is a k-cactus in which each block contains at most two cut-vertices and each cut-vertex lies in exactly two blocks. The number of blocks in a k-cactus chain is the length of the chain. A 6-cactus chain is also called spiro hexagonal chain, and a polyphenyl chain is a cactus graph which

^{*}Supported by the National Natural Science Foundations of China (No.11401102).

[†]Manuscript received January 29, 2018; Revised August 10, 2018

[‡]Corresponding author. E-mail: elian1425@sina.com

can be obtained from a 6-cactus chain by expanding each of the cut-vertices to an cut edge. For example, see the first graph in Figure 1.

Figure 1: A spiro hexagonal chain, its corresponding weighted path and polyphenyl chain

Let G be a connected graph. The vertex set and edge set of G are denoted by V(G) and E(G), respectively. Based on the theory of electrical networks, Klein and Randić [30] introduced a new distance function named resistance distance. The resistance distance between a pair of vertices u and v in G, denoted by $r_G(u, v)$ or r(u, v), is the effective resistance between them in the electrical network N constructed from G by replacing each edge with a unit resistor. This new intrinsic graph metric has being recognized as having more nice purely mathematical, chemical and physical interpretations [7, 12, 29–31].

Analogous to distance-based graph invariants, various graph invariants based on resistance distance have been defined and studied. Among these invariants, the most famous one is the Kirchhoff index [30], also known as the total effective resistance [21] or the effective graph resistance [18]. Like many topological indices, the Kirchhoff index is a structure descriptor and has been found very useful in purely mathematical, physical and chemical interpretations [30, 31, 54]. If the ordinary distance is replaced by the resistance distance in the expression for the Wiener index [47], one arrives at the Kirchhoff index [30].

Definition 1.1 The *Kirchhoff index* of a graph G is denoted by Kf(G) and defined as follows:

$$Kf(G) = \sum_{\{u,v\} \subset V(G)} r_G(u,v).$$