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Abstract

In this paper we give six explicit formulae to compute the Kirchhoff index,
the multiplicative degree-Kirchhoff index and the additive degree-Kirchhoff
index of the k-cactus chain and the cactus graph which can be obtained from
a k-cactus chain by expanding each of the cut-vertices to a cut edge.
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1 Introduction

The objects nowadays known as cactus appeared in the scientific literature more
than half a century ago. Motivated by papers of Husimi [28] and Riddell [41], [44]
dealt with cluster integrals in the theory of condensation in statistical mechanics.
Besides statistical mechanics, where cacti and their generalizations serve as simpli-
fied models of real lattices [36,42], the concept has also found applications in the
theory of electrical and communication networks [56] and in chemistry [25,55]. Many
topological indices have been studied for these structures, including the matching
and independence polynomials [4,16], the Hosoya indices [1],m-electron energy [52],
the Hosoya polynomials [32], and the subtree numbers [50].

A cactus graph G is a connected graph in which each edge lies on at most one
cycle. Therefore, each block in G is either an edge or a cycle. A k-cactus is a cactus
in which each block is a k-cycle. A k-cactus chain is a k-cactus in which each block
contains at most two cut-vertices and each cut-vertex lies in exactly two blocks. The
number of blocks in a k-cactus chain is the length of the chain. A 6-cactus chain is
also called spiro hexagonal chain, and a polyphenyl chain is a cactus graph which
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can be obtained from a 6-cactus chain by expanding each of the cut-vertices to an
cut edge. For example, see the first graph in Figure 1.

Gis
Figure 1: A spiro hexagonal chain, its corresponding weighted path and polyphenyl chain

Let G be a connected graph. The vertex set and edge set of G are denoted
by V(G) and E(G), respectively. Based on the theory of electrical networks, Klein
and Randi¢ [30] introduced a new distance function named resistance distance. The
resistance distance between a pair of vertices u and v in G, denoted by rg(u,v)
or r(u,v), is the effective resistance between them in the electrical network N con-
structed from G by replacing each edge with a unit resistor. This new intrinsic graph
metric has being recognized as having more nice purely mathematical, chemical and
physical interpretations [7,12,29-31].

Analogous to distance-based graph invariants, various graph invariants based
on resistance distance have been defined and studied. Among these invariants,
the most famous one is the Kirchhoff index [30], also known as the total effective
resistance [21] or the effective graph resistance [18]. Like many topological indices,
the Kirchhoff index is a structure descriptor and has been found very useful in purely
mathematical, physical and chemical interpretations [30, 31, 54]. If the ordinary
distance is replaced by the resistance distance in the expression for the Wiener
index [47], one arrives at the Kirchhoff index [30].

Definition 1.1 The Kirchhoff index of a graph G is denoted by K f(G) and
defined as follows:

KfG)= > ra(uv).

{u,w}CV(G)



