ON q-WIENER INDEX OF UNICYCLIC GRAPHS* ${ }^{*}$

Xing Feng ${ }^{1,2 \ddagger}$ Jianping Ou^{2}, \quad Shaihua Liu^{2}
(1. Faculty of Science, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, PR China;
2. Department of Math., Wuyi University, Jiangmen 529020, Guangdong, PR China)

Abstract

The q-Wiener index of unicyclic graphs are determined in this work. As an example of its applications, an explicit expression of q-Wiener index of caterpillar cycles is presented.

Keywords q-Wiener index; unicyclic graphs; caterpillar cycles
2000 Mathematics Subject Classification 05C90; 05C50

1 Introduction

All graphs considered in this paper are connected and simple. As usual, the distance between two vertices u, v of a graph G is denoted by $d_{G}(u, v)$, or $d(u, v)$ for short. The maximum of such numbers, denoted by $d(G)$, is called the diameter of graph G.

Let $u_{0} u_{1} u_{2} \cdots u_{n}$ be a molecular chain. Note the interaction between two atoms decreases when the distance between them increases. Let $q<1$ be a positive real number, and suppose that the contribution of atom u_{1} to atom u_{0} is unity. Then the total interaction of atoms to atom u_{0} can be modeled by

$$
[n+1]_{q}=1+q+q^{2}+\cdots+q^{n}=\frac{1-q^{n+1}}{1-q}
$$

And the total interaction between individual atoms of a molecule with graph G can be modeled by the following formula [1,2]

$$
W_{1}(G, q)=\sum_{\{u, v\} \in V(G)}[d(u, v)]_{q}
$$

[^0]In $[1,2]$, other two concepts of q-Wiener index of a graph G are also introduced as follows

$$
\begin{aligned}
& W_{2}(G, q)=\sum_{\{u, v\} \in V(G)}[d(u, v)]_{q} q^{d-d(u, v)}, \\
& W_{3}(G, q)=\sum_{\{u, v\} \in V(G)}[d(u, v)]_{q} q^{d(u, v)} .
\end{aligned}
$$

On the one hand, these three q-Wiener indices have close relationship with the classic Wiener index, which can be exemplified by the following equations

$$
\lim _{q \rightarrow 1} W_{1}(G, q)=\lim _{q \rightarrow 1} W_{2}(G, q)=\lim _{q \rightarrow 1} W_{3}(G, q)=W(G) .
$$

On the other hand, these three q-Wiener indices are also mutually related as follows

$$
\begin{align*}
& W_{2}(G, q)=q^{d-1} W_{1}\left(G, \frac{1}{q}\right), \tag{1}\\
& W_{3}(G, q)=(1+q) W_{1}\left(G, q^{2}\right)-W_{1}(G, q) . \tag{2}
\end{align*}
$$

The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century [3]. q-Analogs find their applications in lots of areas, such as fractals and multi-fractal measures, the entropy of chaotic dynamical systems, and quantum groups. For derails in this field, the readers are suggested to refer to $[4,5]$ for example. Based on equations (1) and (2), in this work, we only consider the first case of q-Wiener index. As a result, the q-Wiener index of unicyclic graphs are determined. As an example of its applications, an explicit expression of q-Wiener index of caterpillar cycles is also presented.

Before proceeding, let us introduce some more symbols and terminology. For any complete graph K_{n} and a forest F, let K_{n}^{F} denote the graph obtained by pasting one vertex of K_{n} and a vertex of T. For any two trees T_{1} and T_{2} with $u \in V\left(T_{1}\right)$ and $v \in V\left(T_{2}\right)$, let $T_{1} u v T_{2}$ denote a graph obtained by joining T_{1} and T_{2} with an new edge $u v$. In this paper, we shall obtain a q-Wiener index of K_{n}^{F} at first, and then use the obtained observation to determine the q-winer index of unicyclic graphs. For other symbols and terminology not specified herein, we follow that of [6].

$2 \quad q$-Wiener Index of Unicyclic Graphs

For any two vertices of u and v of G, we write $d_{G}(u, v ; q)=[d(u, v)]_{q}$ and $d_{G}(u ; q)=\sum_{v \in V(G)} d_{G}(u, v ; q)$, then

$$
W_{1}(G, q)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v ; q)=\frac{1}{2} \sum_{u \in V(G)} d_{G}(u ; q) .
$$

[^0]: *This work was supported by National Natural Science Foundation of China (11126326), NSF of Guandong Province (S2012010010815), Foundation of Wuyi University (201210041650504).
 ${ }^{\dagger}$ Manuscript received March 11, 2016; Revised July 10, 2018
 ${ }^{\ddagger}$ Corresponding author. E-mail: fengxing_fm@163.com

