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Abstract

An n×n ray pattern A is said to be spectrally arbitrary if for every monic
nth degree polynomial f(x) with coefficients from C, there is a complex matrix
in the ray pattern class of A such that its characteristic polynomial is f(x). In
this paper, a family ray patterns is proved to be spectrally arbitrary by using
Nilpotent-Jacobian method.
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1 Introduction
A ray pattern A = (ajk) of order n is a matrix with entries ajk ∈ {eiθ| 0 ≤ θ <

2π} ∪ {0}, where i2 = −1. Its ray pattern class is

QR(A) = {B = (bjk) ∈ Mn(C)| bjk = rjkajk, rjk ∈ R+, 1 ≤ j, k ≤ n}.

It is easy to see that ray patterns are a generalization of the sign patterns.

A ray pattern A is said to be spectrally arbitrary if for any monic nth degree

polynomial f(x) with coefficients from C, there is a complex matrix B ∈ QR(A)

such that the characteristic polynomial of B is f(x).

Spectrally arbitrary problem is a basic subject in combinatorial matrix theory

and a hot topic for some international scholars. The problem of the spectrally arbi-

trary sign patterns was introduced in [2]. J.H. Drew et al. developed the Nilpotent-

Jacobian method to show that a sign pattern is spectrally arbitrary in [2]. Work on

spectrally arbitrary sign patterns has continued in several articles including [1,3,4].

J.J. Mcdonald and J. Stuart in [6] extended the Nilpotent-Jacobian method from

sign patterns to the ray patterns. Y.Z. Mei and Y.B. Gao in [7] showed that the

minimum number of nonzeros in an n×n irreducible spectrally arbitrary ray pattern

is 3n− 1.
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Though the general method — Nilpotent-Jacobian method — to prove the spec-

trally arbitrary property has been developed, the proof procedure is not very easy.

Let An,m = (ajk) be an n× n complex square matrix as follows

An,m=



1 · · · m · · · n

1 −1 1 0 · · · · · · · · · · · · · · · · · · · · · 0 0

−1 0 1 0 · · · · · · · · · · · · · · · · · · 0 0
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

− 1 0 0 0 1 0 · · · · · · · · · · · · 0 0

m 1 0 0 0 eiθ 1 0 · · · · · · · · · 0 0

1 0 0 0 0 0 1 0 · · · · · · 0 0
...

...
...

...
...

...
. . .

. . .
. . .

...
...

...

1 0 0 0 0 · · · 0 0 1 0 0 0
... 1 0 0 0 · · · · · · · · · 0 0 1 0 0

− 1 0 0 0 · · · · · · · · · · · · 0 0 1 0

− 1 1 0 0 · · · · · · · · · · · · · · · 0 0 1

n 1 −i −i −i · · · · · · · · · · · · · · · −i −i −i



(0≤θ<2π),

where n, m, j and k are positive integers; 2 ≤ m ≤ n − 2, 1 ≤ j, k ≤ n; and the

(m,m) entry is eiθ.

In [6], the ray pattern An,2 was proved to be spectrally arbitrary. In [8], the

ray pattern An,3 was proved to be spectrally arbitrary. In [5,9], several families ray

patterns were proved to be spectrally arbitrary.

In this paper, we show that for n ≥ 8 if θ ∈
(
arccos 2√

5
, arccos

√
3+

√
3

6

)
, then

the ray pattern An,4 is spectrally arbitrary.

2 The Extended Nilpotent-Jacobian Method

A square matrix A is called to be nilpotent if there exists a positive integer k such

that Ak = 0 but Ak−1 ̸= 0. A ray pattern B is said to be potentially nilpotent if there

is a complex matrix A ∈ QR(B) with characteristic polynomial g(x) = xn. If the

ray pattern A is spectrally arbitrary, then A is potentially nilpotent affirmatively.

In [6], the extended Nilpotent-Jacobian method can be summarized as follows:

(1) Find a nilpotent matrix in the given ray pattern class.

(2) Change 2n of the positive coefficients (denoted r1, r2, · · · , r2n) of the eiθjk in

this nilpotent matrix to variables t1, t2, · · · , t2n.
(3) Express the characteristic polynomial of the resulting matrix as:

xn +

n∑
k=1

(fk(t1, t2, · · · , t2n) + igk(t1, t2, · · · , t2n))xn−k.


