Ann. of Appl. Math. **33**:3(2017), 254-265

A CLASS OF SPECTRALLY ARBITRARY RAY PATTERNS *

Jiangwu Deng[†]

(College of Math. and Computer Science, Fuzhou University, Fuzhou 350116, Fujian, PR China)

Abstract

An $n \times n$ ray pattern A is said to be spectrally arbitrary if for every monic nth degree polynomial f(x) with coefficients from \mathbb{C} , there is a complex matrix in the ray pattern class of A such that its characteristic polynomial is f(x). In this paper, a family ray patterns is proved to be spectrally arbitrary by using Nilpotent-Jacobian method.

Keywords ray pattern; Nilpotent-Jacobian method; spectrally arbitrary **2000 Mathematics Subject Classification** 15A18; 15A29

1 Introduction

A ray pattern $A = (a_{jk})$ of order n is a matrix with entries $a_{jk} \in \{e^{i\theta} | 0 \le \theta < 2\pi\} \cup \{0\}$, where $i^2 = -1$. Its ray pattern class is

$$Q_R(A) = \{ B = (b_{jk}) \in M_n(\mathbb{C}) | b_{jk} = r_{jk} a_{jk}, r_{jk} \in \mathbb{R}^+, 1 \le j, k \le n \}.$$

It is easy to see that ray patterns are a generalization of the sign patterns.

A ray pattern A is said to be *spectrally arbitrary* if for any monic nth degree polynomial f(x) with coefficients from \mathbb{C} , there is a complex matrix $B \in Q_R(A)$ such that the characteristic polynomial of B is f(x).

Spectrally arbitrary problem is a basic subject in combinatorial matrix theory and a hot topic for some international scholars. The problem of the spectrally arbitrary sign patterns was introduced in [2]. J.H. Drew et al. developed the Nilpotent-Jacobian method to show that a sign pattern is spectrally arbitrary in [2]. Work on spectrally arbitrary sign patterns has continued in several articles including [1,3,4]. J.J. Mcdonald and J. Stuart in [6] extended the Nilpotent-Jacobian method from sign patterns to the ray patterns. Y.Z. Mei and Y.B. Gao in [7] showed that the minimum number of nonzeros in an $n \times n$ irreducible spectrally arbitrary ray pattern is 3n - 1.

^{*}Manuscript received January 11, 2017; Revised May 8, 2017

[†]Corresponding author. E-mail: 870531288@qq.com

Though the general method — Nilpotent-Jacobian method — to prove the spectrally arbitrary property has been developed, the proof procedure is not very easy. Let $A_{n,m} = (a_{jk})$ be an $n \times n$ complex square matrix as follows

	1		•••		m			• • •				n	
1	(-1)	1	0				•••	•••			0	0)	1
\vdots m $A_{n,m}=$	-1	0	1	0	•••			•••			0	0	$(0 \le \theta < 2\pi),$
	:	÷	·	·	·	÷	÷	÷	÷	÷	:	÷	
	- 1	0	0	0	1	0	•••				0	0	
	1	0	0	0	$\mathrm{e}^{i\theta}$	1	0		• • • •		0	0	
	1	0	0	0	0	0	1	0		•••	0	0	
	:	:	:	÷	÷	÷	۰.	۰.	·•.	÷	÷	÷	
	1	0	0	0	0	•••	0	0	1	0	0	0	
÷	1	0	0	0				0	0	1	0	0	
	-1	0	0	0	•••	•••	•••	•••	0	0	1	0	
	-1	1	0	0	•••	•••	•••	•••	• • •	0	0	1	
n	$\setminus 1$	-i	-i	-i	• • •	•••	•••	•••		-i	-i	-i	

where n, m, j and k are positive integers; $2 \le m \le n-2$, $1 \le j, k \le n$; and the (m,m) entry is $e^{i\theta}$.

In [6], the ray pattern $A_{n,2}$ was proved to be spectrally arbitrary. In [8], the ray pattern $A_{n,3}$ was proved to be spectrally arbitrary. In [5,9], several families ray patterns were proved to be spectrally arbitrary.

In this paper, we show that for $n \ge 8$ if $\theta \in \left(\arccos \frac{2}{\sqrt{5}}, \arccos \sqrt{\frac{3+\sqrt{3}}{6}}\right)$, then the ray pattern $A_{n,4}$ is spectrally arbitrary.

2 The Extended Nilpotent-Jacobian Method

A square matrix A is called to be *nilpotent* if there exists a positive integer k such that $A^k = 0$ but $A^{k-1} \neq 0$. A ray pattern B is said to be *potentially nilpotent* if there is a complex matrix $A \in Q_R(B)$ with characteristic polynomial $g(x) = x^n$. If the ray pattern A is spectrally arbitrary, then A is potentially nilpotent affirmatively.

In [6], the extended Nilpotent-Jacobian method can be summarized as follows:

(1) Find a nilpotent matrix in the given ray pattern class.

(2) Change 2n of the positive coefficients (denoted r_1, r_2, \dots, r_{2n}) of the $e^{i\theta_{jk}}$ in this nilpotent matrix to variables t_1, t_2, \dots, t_{2n} .

(3) Express the characteristic polynomial of the resulting matrix as:

$$x^{n} + \sum_{k=1}^{n} (f_{k}(t_{1}, t_{2}, \cdots, t_{2n}) + ig_{k}(t_{1}, t_{2}, \cdots, t_{2n}))x^{n-k}.$$