A CLASS OF SPECTRALLY ARBITRARY RAY PATTERNS *

Jiangwu Deng ${ }^{\dagger}$
(College of Math. and Computer Science, Fuzhou University, Fuzhou 350116, Fujian, PR China)

Abstract

An $n \times n$ ray pattern A is said to be spectrally arbitrary if for every monic nth degree polynomial $f(x)$ with coefficients from \mathbb{C}, there is a complex matrix in the ray pattern class of A such that its characteristic polynomial is $f(x)$. In this paper, a family ray patterns is proved to be spectrally arbitrary by using Nilpotent-Jacobian method.

Keywords ray pattern; Nilpotent-Jacobian method; spectrally arbitrary
2000 Mathematics Subject Classification 15A18; 15A29

1 Introduction

A ray pattern $A=\left(a_{j k}\right)$ of order n is a matrix with entries $a_{j k} \in\left\{\mathrm{e}^{i \theta} \mid 0 \leq \theta<\right.$ $2 \pi\} \cup\{0\}$, where $i^{2}=-1$. Its ray pattern class is

$$
Q_{R}(A)=\left\{B=\left(b_{j k}\right) \in M_{n}(\mathbb{C}) \mid b_{j k}=r_{j k} a_{j k}, r_{j k} \in \mathbb{R}^{+}, 1 \leq j, k \leq n\right\} .
$$

It is easy to see that ray patterns are a generalization of the sign patterns.
A ray pattern A is said to be spectrally arbitrary if for any monic nth degree polynomial $f(x)$ with coefficients from \mathbb{C}, there is a complex matrix $B \in Q_{R}(A)$ such that the characteristic polynomial of B is $f(x)$.

Spectrally arbitrary problem is a basic subject in combinatorial matrix theory and a hot topic for some international scholars. The problem of the spectrally arbitrary sign patterns was introduced in [2]. J.H. Drew et al. developed the NilpotentJacobian method to show that a sign pattern is spectrally arbitrary in [2]. Work on spectrally arbitrary sign patterns has continued in several articles including $[1,3,4]$. J.J. Mcdonald and J. Stuart in [6] extended the Nilpotent-Jacobian method from sign patterns to the ray patterns. Y.Z. Mei and Y.B. Gao in [7] showed that the minimum number of nonzeros in an $n \times n$ irreducible spectrally arbitrary ray pattern is $3 n-1$.

[^0]Though the general method - Nilpotent-Jacobian method - to prove the spectrally arbitrary property has been developed, the proof procedure is not very easy. Let $A_{n, m}=\left(a_{j k}\right)$ be an $n \times n$ complex square matrix as follows

$$
A_{n, m}=\left(\begin{array}{cccccccccccc}
1 & & \cdots & & m & & & \cdots & & & & n \\
-1 & 1 & 0 & \cdots & 0 & 0 \\
-1 & 0 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\
-1 & 0 & 0 & 0 & 1 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 \\
1 & 0 & 0 & 0 & \mathrm{e}^{i \theta} & 1 & 0 & \cdots & \cdots & \cdots & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \cdots & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \vdots \\
1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & \cdots & \cdots & \cdots & 0 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & 0 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & 0 & 0 & 1 \\
1 & -i & -i & -i & \cdots & \cdots & \cdots & \cdots & \cdots & -i & -i & -i
\end{array}\right)
$$

where n, m, j and k are positive integers; $2 \leq m \leq n-2,1 \leq j, k \leq n$; and the (m, m) entry is $\mathrm{e}^{i \theta}$.

In [6], the ray pattern $A_{n, 2}$ was proved to be spectrally arbitrary. In [8], the ray pattern $A_{n, 3}$ was proved to be spectrally arbitrary. In [5,9], several families ray patterns were proved to be spectrally arbitrary.

In this paper, we show that for $n \geq 8$ if $\theta \in\left(\arccos \frac{2}{\sqrt{5}}, \arccos \sqrt{\frac{3+\sqrt{3}}{6}}\right)$, then the ray pattern $A_{n, 4}$ is spectrally arbitrary.

2 The Extended Nilpotent-Jacobian Method

A square matrix A is called to be nilpotent if there exists a positive integer k such that $A^{k}=0$ but $A^{k-1} \neq 0$. A ray pattern B is said to be potentially nilpotent if there is a complex matrix $A \in Q_{R}(B)$ with characteristic polynomial $g(x)=x^{n}$. If the ray pattern A is spectrally arbitrary, then A is potentially nilpotent affirmatively.

In [6], the extended Nilpotent-Jacobian method can be summarized as follows:
(1) Find a nilpotent matrix in the given ray pattern class.
(2) Change $2 n$ of the positive coefficients (denoted $r_{1}, r_{2}, \cdots, r_{2 n}$) of the $\mathrm{e}^{i \theta_{j k}}$ in this nilpotent matrix to variables $t_{1}, t_{2}, \cdots, t_{2 n}$.
(3) Express the characteristic polynomial of the resulting matrix as:

$$
x^{n}+\sum_{k=1}^{n}\left(f_{k}\left(t_{1}, t_{2}, \cdots, t_{2 n}\right)+i g_{k}\left(t_{1}, t_{2}, \cdots, t_{2 n}\right)\right) x^{n-k} .
$$

[^0]: *Manuscript received January 11, 2017; Revised May 8, 2017
 ${ }^{\dagger}$ Corresponding author. E-mail: 870531288@qq.com

