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Abstract

We design a family of 2D Hm-nonconforming finite elements using the full
P2m−3 degree polynomial space, for solving 2mth elliptic partial differential
equations. The consistent error is estimated and the optimal order of conver-
gence is proved. Numerical tests on the new elements for solving tri-harmonic,
4-harmonic, 5-harmonic and 6-harmonic equations are presented, to verify the
theory.
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1 Introduction

For solving 2mth order elliptic partial differential equations, the finite element

spaces are designed as either a subspace of Hm Sobolev space, or not a subspace. In

the first case, the finite element is called a conforming element. In the latter case,

the finite element is called a non-conforming element. But some continuity is still

required for non-conforming finite elements. The Courant triangle, the space of con-

tinuous piecewise linear functions, is anH1 conforming finite element, solving second

order elliptic equations. The Crouzeix-Raviart triangle, the space of piecewise linear

functions continuous at mid-edge points of each triangle, is a P1 H1-nonconforming

finite element. The possible minimum polynomial degree is m for an Hm conforming
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and non-conforming finite element. This is because an mth order derivative of poly-

nomial degree m−1 or less would be zero. Wang and Xu constructed a family of Pm

nonconforming finite elements for 2mth-order elliptic partial differential equations

in Rn for any n ≥ m, on simplicial grids [18]. Such minimum finite elements are

very simple compared with the standard conforming elements. For example, in 3D,

for m = 2, 3, 4 the polynomial degrees of the H2, H3 and H4 elements are 9, 17

and 25, respectively, cf. [1, 2, 20], while those of Wang-Xu’s elements are 2, 3 and 4

only, respectively. However, there is a limit that the space dimension n must be no

less than the Sobolev space index m. For example, Wang and Xu constructed a P3

H3-nonconforming element in 3D [18], but not in 2D.

On rectangular grids, the problem of constructing Hm conforming elements is

relatively simple. Hu, Huang and Zhang constructed an n-D C1-Q2 element on

rectangular grids [10]. Here Qk means the space of polynomials of separated degree

k or less. Then, the element is extended to a whole family of Ck−1-Qk elements,

i.e., Hk-conforming Qk elements for any space dimension n, in [11]. That is, the

minimum polynomial degree k (= m) is achieved in constructing Hm-conforming

finite elements, on rectangular grids for any space dimension n. There is no limit of

Wang-Xu [18] that n ≥ m.

It is a challenge to remove the limit n ≥ m in the Wang-Xu’s work [18], by

constructing the minimum degree non-conforming Hm finite elements for the space

dimension n < m. First, in 2D, we need to construct Hm non-conforming finite

elements of polynomial degree m on triangular grids, m > 2. This is not possible on

general grids. In [12] Hu-Zhang constructed an H3 non-conforming finite element of

cubic polynomials, but on the Hsieh-Clough-Tocher macro-triangle grids, following

the idea in the construction of Hm conforming elements on macro rectangular grids

in [10,11]. In [19], Wu-Xu enriched the P3 polynomial space by 3 P4 bubble functions

to obtain a working H3 non-conforming element in 2D. In fact, they extended this

technique to n space dimension [19] so that Hn+1 non-conforming elements in n

space dimension is constructed by Pn+1 polynomials enriched by n Pn+2 face-bubble

functions. In this work, we use the full P2m−3 polynomial space for m ≥ 4 to

construct 2D Hm non-conforming elements. For m = 3 > n = 2, we have the P4

non-conforming finite element. That is, the new element is of full P4 space, two

more degrees of freedom locally than Wu-Xu’s element [19].

2 Definition of Nonconforming Elements

Let a 2D polygonal domain be triangulated by a quasi-uniform triangular grid of

size h, Th. Let Eh denote the set of edges of Th, and Eh(Ω) denote the set of internal
edges. Given e = K1 ∩K2, the jump and average of a piecewise function v across it


