A CANONICAL CONSTRUCTION OF H^{m}-NONCONFORMING TRIANGULAR FINITE ELEMENTS* ${ }^{*}$

Jun Hu^{\ddagger}
(LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, PR China)
Shangyou Zhang
(Dept. of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA)

Abstract

We design a family of $2 \mathrm{D} H^{m}$-nonconforming finite elements using the full $P_{2 m-3}$ degree polynomial space, for solving $2 m$ th elliptic partial differential equations. The consistent error is estimated and the optimal order of convergence is proved. Numerical tests on the new elements for solving tri-harmonic, 4 -harmonic, 5 -harmonic and 6 -harmonic equations are presented, to verify the theory.

Keywords nonconforming finite element; minimum element; high order partial differential equation

2000 Mathematics Subject Classification 65N30; 73C02

1 Introduction

For solving $2 m$ th order elliptic partial differential equations, the finite element spaces are designed as either a subspace of H^{m} Sobolev space, or not a subspace. In the first case, the finite element is called a conforming element. In the latter case, the finite element is called a non-conforming element. But some continuity is still required for non-conforming finite elements. The Courant triangle, the space of continuous piecewise linear functions, is an H^{1} conforming finite element, solving second order elliptic equations. The Crouzeix-Raviart triangle, the space of piecewise linear functions continuous at mid-edge points of each triangle, is a $P_{1} H^{1}$-nonconforming finite element. The possible minimum polynomial degree is m for an H^{m} conforming

[^0]and non-conforming finite element. This is because an m th order derivative of polynomial degree $m-1$ or less would be zero. Wang and Xu constructed a family of P_{m} nonconforming finite elements for $2 m$ th-order elliptic partial differential equations in R^{n} for any $n \geq m$, on simplicial grids [18]. Such minimum finite elements are very simple compared with the standard conforming elements. For example, in 3D, for $m=2,3,4$ the polynomial degrees of the H^{2}, H^{3} and H^{4} elements are 9,17 and 25 , respectively, cf. [$1,2,20$], while those of Wang-Xu's elements are 2,3 and 4 only, respectively. However, there is a limit that the space dimension n must be no less than the Sobolev space index m. For example, Wang and Xu constructed a P_{3} H^{3}-nonconforming element in 3D [18], but not in 2D.

On rectangular grids, the problem of constructing H^{m} conforming elements is relatively simple. Hu, Huang and Zhang constructed an n-D $C^{1}-Q_{2}$ element on rectangular grids [10]. Here Q_{k} means the space of polynomials of separated degree k or less. Then, the element is extended to a whole family of $C^{k-1}-Q_{k}$ elements, i.e., H^{k}-conforming Q_{k} elements for any space dimension n, in [11]. That is, the minimum polynomial degree $k(=m)$ is achieved in constructing H^{m}-conforming finite elements, on rectangular grids for any space dimension n. There is no limit of Wang-Xu [18] that $n \geq m$.

It is a challenge to remove the limit $n \geq m$ in the Wang-Xu's work [18], by constructing the minimum degree non-conforming H^{m} finite elements for the space dimension $n<m$. First, in 2D, we need to construct H^{m} non-conforming finite elements of polynomial degree m on triangular grids, $m>2$. This is not possible on general grids. In [12] Hu-Zhang constructed an H^{3} non-conforming finite element of cubic polynomials, but on the Hsieh-Clough-Tocher macro-triangle grids, following the idea in the construction of H^{m} conforming elements on macro rectangular grids in $[10,11]$. In [19], Wu-Xu enriched the P_{3} polynomial space by $3 P_{4}$ bubble functions to obtain a working H^{3} non-conforming element in 2D. In fact, they extended this technique to n space dimension [19] so that H^{n+1} non-conforming elements in n space dimension is constructed by P_{n+1} polynomials enriched by $n P_{n+2}$ face-bubble functions. In this work, we use the full $P_{2 m-3}$ polynomial space for $m \geq 4$ to construct 2D H^{m} non-conforming elements. For $m=3>n=2$, we have the P_{4} non-conforming finite element. That is, the new element is of full P_{4} space, two more degrees of freedom locally than Wu-Xu's element [19].

2 Definition of Nonconforming Elements

Let a 2D polygonal domain be triangulated by a quasi-uniform triangular grid of size h, \mathcal{T}_{h}. Let \mathcal{E}_{h} denote the set of edges of \mathcal{T}_{h}, and $\mathcal{E}_{h}(\Omega)$ denote the set of internal edges. Given $e=K_{1} \cap K_{2}$, the jump and average of a piecewise function v across it

[^0]: *The research of the first author was supported by NSFC projection 11625101, 91430213 and 11421101.
 ${ }^{\dagger}$ Manuscript received October 14, 2016
 \ddagger Corresponding author. E-mail: hujun@math.pku.edu.cn

