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Abstract

This paper deals with the class of Q-tensors, that is, a Q-tensor is a real
tensor A such that the tensor complementarity problem (q,A):

finding an x ∈ Rn such that x ≥ 0,q+Axm−1 ≥ 0, and x⊤(q+Axm−1) = 0,

has a solution for each vector q ∈ Rn. Several subclasses of Q-tensors are
given: P-tensors, R-tensors, strictly semi-positive tensors and semi-positive
R0-tensors. We prove that a nonnegative tensor is a Q-tensor if and only if all
of its principal diagonal entries are positive, and so the equivalence of Q-tensor,
R-tensors, strictly semi-positive tensors was showed if they are nonnegative
tensors. We also show that a tensor is an R0-tensor if and only if the tensor
complementarity problem (0,A) has no non-zero vector solution, and a tensor
is a R-tensor if and only if it is an R0-tensor and the tensor complementarity
problem (e,A) has no non-zero vector solution, where e = (1, 1 · · · , 1)⊤.
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1 Introduction

Throughout this paper, we use small letters x, u, v, α, · · · , for scalars, small bold
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letters x,y,u, · · · , for vectors, capital letters A,B, · · · , for matrices, calligraphic

letters A,B, · · · , for tensors. All the tensors discussed in this paper are real. Let

In := {1, 2, · · · , n}, Rn := {(x1, x2, · · · , xn)⊤;xi ∈ R, i ∈ In}, Rn
+ := {x ∈ Rn;x ≥

0}, Rn
− := {x ∈ Rn;x ≤ 0}, Rn

++ := {x ∈ Rn;x > 0}, e = (1, 1, · · · , 1)⊤, and
x[m] = (xm1 , xm2 , · · · , xmn )⊤ for x = (x1, x2, · · · , xn)⊤, where R is the set of real

numbers, x⊤ is the transposition of a vector x, and x ≥ 0 (x > 0) means xi ≥ 0

(xi > 0) for all i ∈ In.

Let A = (aij) be an n× n real matrix. A is said to be a Q-matrix iff the linear

complementarity problem, denoted by (q, A),

finding a z ∈ Rn such that z ≥ 0,q+Az ≥ 0, and z⊤(q+Az) = 0, (1.1)

has a solution for each vector q ∈ Rn. We say that A is a P-matrix iff for any

nonzero vector x in Rn, there exists an i ∈ In such that xi(Ax)i > 0. It is well-known

that A is a P-matrix if and only if the linear complementarity problem (q, A) has

a unique solution for all q ∈ Rn. Xiu and Zhang [1] also gave the necessary and

sufficient conditions of P-matrices. A good review of P-matrices and Q-matrices can

be found in the books by Berman and Plemmons [2], and Cottle, Pang and Stone [3].

Q-matrices and P(P0)-matrices have a long history and wide applications in

mathematical sciences. Pang [4] showed that each semi-monotone R0-matrix is a Q-

matrix. Pang [5] gave a class of Q-matrices which includes N-matrices and strictly

semi-monotone matrices. Murty [6] showed that a nonnegative matrix is a Q-matrix

if and only if all its diagonal entries are positive. Morris [7] presented two coun-

terexamples of the Q-Matrix conjectures: a matrix is Q-matrix solely by considering

the signs of its subdeterminants. Cottle [8] studied some properties of complete

Q-matrices, a subclass of Q-matrices. Kojima and Saigal [9] studied the number of

solutions to a class of linear complementarity problems. Gowda [10] proved that a

symmetric semi-monotone matrix is a Q-matrix if and only if it is an R0-matrix.

Eaves [11] obtained the equivalent definition of strictly semi-monotone matrices, a

main subclass of Q-matrices.

On the other hand, motivated by the discussion on positive definiteness of mul-

tivariate homogeneous polynomial forms [12-14], in 2005, Qi [15] introduced the

concept of positive (semi-)definite symmetric tensors. In the same time, Qi also in-

troduced eigenvalues, H-eigenvalues, E-eigenvalues and Z-eigenvalues for symmetric

tensors. It was shown that an even order symmetric tensor is positive (semi-)definite

if and only if all of its H-eigenvalues or Z-eigenvalues are positive (nonnegative)

([15, Theorem 5]). Various structured tensors have been studied well, such as, Zhang,

Qi and Zhou [16] and Ding, Qi and Wei [17] for M-tensors, Song and Qi [18] for P-

(P0)tensors and B-(B0)tensors, Qi and Song [19] for positive (semi-)definition of


