Ann. of Appl. Math. **33**:3(2017), 308-323

PROPERTIES OF TENSOR COMPLEMENTARITY PROBLEM AND SOME CLASSES OF STRUCTURED TENSORS*[†]

Yisheng Song[‡]

(School of Math. and Information Science, Henan Normal University, Xinxiang 453007, Henan, PR China)

Liqun Qi

(Dept. of Applied Math., The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China)

Abstract

This paper deals with the class of Q-tensors, that is, a Q-tensor is a real tensor \mathcal{A} such that the tensor complementarity problem $(\mathbf{q}, \mathcal{A})$:

finding an $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{x} \ge \mathbf{0}, \mathbf{q} + \mathcal{A}\mathbf{x}^{m-1} \ge \mathbf{0}$, and $\mathbf{x}^{\top}(\mathbf{q} + \mathcal{A}\mathbf{x}^{m-1}) = 0$,

has a solution for each vector $\mathbf{q} \in \mathbb{R}^n$. Several subclasses of Q-tensors are given: P-tensors, R-tensors, strictly semi-positive tensors and semi-positive R_0 -tensors. We prove that a nonnegative tensor is a Q-tensor if and only if all of its principal diagonal entries are positive, and so the equivalence of Q-tensor, R-tensors, strictly semi-positive tensors was showed if they are nonnegative tensors. We also show that a tensor is an R_0 -tensor if and only if the tensor complementarity problem $(\mathbf{0}, \mathcal{A})$ has no non-zero vector solution, and a tensor is a R-tensor if and only if it is an R_0 -tensor and the tensor complementarity problem $(\mathbf{e}, \mathcal{A})$ has no non-zero vector solution, where $\mathbf{e} = (1, 1 \cdots, 1)^{\top}$.

Keywords Q-tensor; R-tensor; R₀-tensor; strictly semi-positive; tensor complementarity problem

2010 Mathematics Subject Classification 65H17; 15A18; 90C30; 47H15; 47H12; 34B10; 47A52; 47J10; 47H09; 15A48; 47H07

1 Introduction

Throughout this paper, we use small letters x, u, v, α, \cdots , for scalars, small bold

[‡]Corresponding author. E-mail: songyisheng1@gmail.com

^{*}This work was supported by the National Natural Science Foundation of China (Grant No. 11571095, 11601134), the Hong Kong Research Grant Council (Grant No. PolyU 502111, 501212, 501913 and 15302114).

[†]Manuscript received January 17, 2017

letters $\mathbf{x}, \mathbf{y}, \mathbf{u}, \cdots$, for vectors, capital letters A, B, \cdots , for matrices, calligraphic letters $\mathcal{A}, \mathcal{B}, \cdots$, for tensors. All the tensors discussed in this paper are real. Let $I_n := \{1, 2, \dots, n\}, \mathbb{R}^n := \{(x_1, x_2, \dots, x_n)^\top; x_i \in \mathbb{R}, i \in I_n\}, \mathbb{R}^n_+ := \{x \in \mathbb{R}^n; x \ge \mathbf{0}\}, \mathbb{R}^n_- := \{\mathbf{x} \in \mathbb{R}^n; x \le \mathbf{0}\}, \mathbb{R}^n_{++} := \{\mathbf{x} \in \mathbb{R}^n; x > \mathbf{0}\}, \mathbf{e} = (1, 1, \dots, 1)^\top$, and $\mathbf{x}^{[m]} = (x_1^m, x_2^m, \dots, x_n^m)^\top$ for $\mathbf{x} = (x_1, x_2, \dots, x_n)^\top$, where \mathbb{R} is the set of real numbers, \mathbf{x}^\top is the transposition of a vector \mathbf{x} , and $\mathbf{x} \ge \mathbf{0}$ ($\mathbf{x} > \mathbf{0}$) means $x_i \ge 0$ $(x_i > 0)$ for all $i \in I_n$.

Let $A = (a_{ij})$ be an $n \times n$ real matrix. A is said to be a **Q-matrix** iff the linear complementarity problem, denoted by (\mathbf{q}, A) ,

finding a
$$\mathbf{z} \in \mathbb{R}^n$$
 such that $\mathbf{z} \ge \mathbf{0}, \mathbf{q} + A\mathbf{z} \ge \mathbf{0}$, and $\mathbf{z}^{\top}(\mathbf{q} + A\mathbf{z}) = 0$, (1.1)

has a solution for each vector $\mathbf{q} \in \mathbb{R}^n$. We say that A is a **P-matrix** iff for any nonzero vector \mathbf{x} in \mathbb{R}^n , there exists an $i \in I_n$ such that $x_i(Ax)_i > 0$. It is well-known that A is a P-matrix if and only if the linear complementarity problem (\mathbf{q}, A) has a unique solution for all $\mathbf{q} \in \mathbb{R}^n$. Xiu and Zhang [1] also gave the necessary and sufficient conditions of P-matrices. A good review of P-matrices and Q-matrices can be found in the books by Berman and Plemmons [2], and Cottle, Pang and Stone [3].

Q-matrices and $P(P_0)$ -matrices have a long history and wide applications in mathematical sciences. Pang [4] showed that each semi-monotone R_0 -matrix is a Qmatrix. Pang [5] gave a class of Q-matrices which includes N-matrices and strictly semi-monotone matrices. Murty [6] showed that a nonnegative matrix is a Q-matrix if and only if all its diagonal entries are positive. Morris [7] presented two counterexamples of the Q-Matrix conjectures: a matrix is Q-matrix solely by considering the signs of its subdeterminants. Cottle [8] studied some properties of complete Q-matrices, a subclass of Q-matrices. Kojima and Saigal [9] studied the number of solutions to a class of linear complementarity problems. Gowda [10] proved that a symmetric semi-monotone matrix is a Q-matrix if and only if it is an R_0 -matrix. Eaves [11] obtained the equivalent definition of strictly semi-monotone matrices, a main subclass of Q-matrices.

On the other hand, motivated by the discussion on positive definiteness of multivariate homogeneous polynomial forms [12-14], in 2005, Qi [15] introduced the concept of positive (semi-)definite symmetric tensors. In the same time, Qi also introduced eigenvalues, H-eigenvalues, E-eigenvalues and Z-eigenvalues for symmetric tensors. It was shown that an even order symmetric tensor is positive (semi-)definite if and only if all of its H-eigenvalues or Z-eigenvalues are positive (nonnegative) ([15, Theorem 5]). Various structured tensors have been studied well, such as, Zhang, Qi and Zhou [16] and Ding, Qi and Wei [17] for M-tensors, Song and Qi [18] for P-(P₀)tensors and B-(B₀)tensors, Qi and Song [19] for positive (semi-)definition of