WEAK AND STRONG CONVERGENCE THEOREMS FOR SPLIT GENERALIZED MIXED EQUILIBRIUM PROBLEM* ${ }^{*}$

Jingni Ye^{\ddagger}
(Zhicheng College, Fuzhou University, Fujian 350002, PR China)

Abstract

The purpose of this paper is to introduce a split generalized mixed equilibrium problem (SGMEP) and consider some iterative sequences to find a solution of the generalized mixed equilibrium problem such that its image under a given bounded linear operator is a solution of another generalized mixed equilibrium problem. We obtain some weak and strong convergence theorems.

Keywords split generalized mixed equilibrium problem; weak convergence; strong convergence; fixed point

2000 Mathematics Subject Classification $47 \mathrm{H} 10 ; 47 \mathrm{H} 06 ; 47 \mathrm{H} 17$; 47J20

1 Introduction and Preliminaries

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ and C be a nonempty closed convex subset of H. Let f be a bi-function from $C \times C$ to R and $\varphi: C \rightarrow R$ be a function, where R is the set of real numbers. Let $B: C \rightarrow H$ be a nonlinear mapping. Then we consider the following generalized mixed equilibrium problem: There exists an $x \in C$, such that

$$
\begin{equation*}
f(x, y)+\varphi(y)-\varphi(x)+\langle B x, y-x\rangle \geq 0, \quad \text { for any } y \in C . \tag{1.1}
\end{equation*}
$$

The set of solutions of (1.1) is denoted by $\operatorname{GMEP}(f, \varphi, B)$.
If $B=0$, problem (1.1) becomes the following mixed equilibrium problem: There exists an $x \in C$, such that

$$
\begin{equation*}
f(x, y)+\varphi(y)-\varphi(x) \geq 0, \quad \text { for any } y \in C \tag{1.2}
\end{equation*}
$$

The set of solutions of (1.2) is denoted by $\operatorname{MEP}(f, \varphi)$.

[^0]If $\varphi=0$, problem (1.1) reduces to the following generalized equilibrium problem: There exists an $x \in C$, such that

$$
\begin{equation*}
f(x, y)+\langle B x, y-x\rangle \geq 0, \quad \text { for any } y \in C . \tag{1.3}
\end{equation*}
$$

The set of solutions of (1.3) is denoted by $\operatorname{GEP}(f, B)$.
If $\varphi=0$ and $B=0$, problem (1.1) becomes the following equilibrium problem: There exists an $x \in C$, such that

$$
\begin{equation*}
f(x, y) \geq 0, \quad \text { for any } y \in C . \tag{1.4}
\end{equation*}
$$

The set of solutions of (1.4) is denoted by $E P(f)$.
Equilibrium problem is very general in the sense that it includes, as special cases, optimization problems, variational inequalities, mini or max problems, Nash equilibrium problem in noncooperative games and others; see for instance [1-20].

In 2012, Zhenhua He [12] proposed a new equilibrium problem which is called split equilibrium problem (SEP). Let E_{1} and E_{2} be two real Banach spaces, C be a closed convex subset of E_{1}, K be a closed convex subset of $E_{2}, A: E_{1} \rightarrow E_{2}$ be a bounded linear operator, f be a bi-function from $C \times C$ into R and g be a bi-function from $K \times K$ into R. The SEP is to find an element $x^{*} \in C$, such that

$$
f\left(x^{*}, y\right) \geq 0, \quad \text { for any } y \in C
$$

and such that $u:=A x^{*} \in K$ satisfying

$$
g(u, v) \geq 0, \quad \text { for any } v \in K .
$$

Inspired and motivated by the above works, we propose a split generalized mixed equilibrium problem (SGMEP). Let E_{1} and E_{2} be two real Banach spaces, E_{1}^{*} and E_{2}^{*} denote the dual of E_{1} and E_{2}, respectively, C be a closed convex subset of E_{1}, K be a closed convex subset of $E_{2}, A: E_{1} \rightarrow E_{2}$ be a bounded linear operator, f be a bi-function from $C \times C$ into R, g be a bi-function from $K \times K$ into $R, B: C \rightarrow E_{1}^{*}$ and $S: K \rightarrow E_{2}^{*}$ be two mappings, $\varphi: C \rightarrow R$ and $\psi: K \rightarrow R$ be two functions. The SGMEP is to find an element $p \in C$ such that

$$
\begin{equation*}
f(p, y)+\varphi(y)-\varphi(p)+\langle B p, y-p\rangle \geq 0, \quad \text { for any } y \in C, \tag{1.5}
\end{equation*}
$$

and that $u:=A p \in K$ satisfies

$$
\begin{equation*}
g(u, v)+\psi(v)-\psi(u)+\langle S u, v-u\rangle \geq 0, \quad \text { for any } v \in K \tag{1.6}
\end{equation*}
$$

For convenience, we denote the solution set of the SGMEP by Ω, that is, $\Omega=$ $\{x \in \operatorname{GMEP}(f, \varphi, B): A x \in \operatorname{GMEP}(g, \psi, S)\}$.

Now, we give two examples to show $\Omega \neq \emptyset$.

[^0]: *This research was supported by the Science and Technology Project of Education Department of Fujian Province (Grant number: JA13363).
 ${ }^{\dagger}$ Manuscript received July 8, 2015; Revised December 31, 2015
 ${ }^{\ddagger}$ Corresponding author. E-mail: 46793299@qq.com

