CYCLES EMBEDDING ON FOLDED HYPERCUBES WITH FAULTY NODES* ${ }^{*}$

Dan Yuan \ddagger Hongmei Liu, Maozheng Tang
(College of Science, Three Gorges University, Hubei 443002, PR China)

Abstract

Let $F F_{v}$ be the set of faulty nodes in an n-dimensional folded hypercube $F Q_{n}$ with $\left|F F_{v}\right| \leq n-1$ and all faulty vertices are not adjacent to the same vertex. In this paper, we show that if $n \geq 4$, then every edge of $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every even length from 6 to $2^{n}-2\left|F F_{v}\right|$.

Keywords folded hypercube; interconnection network; fault-tolerant; path

2000 Mathematics Subject Classification 68M15; 68M10

1 Introduction

The n-dimensional hypercube Q_{n} (or n-cube) is one of the most important topology of networks due to its excellent properties such as regularity, recursive structure, small diameter, vertex and edge transitive and relatively short mean distance [1]. In order to improve the performance of hypercube, the folded hypercube $F Q_{n}$ has been proposed [2].

Since a large-scale hypercube network fails in any component, it's desirable that the rest of the network continue to operate in spite of the failure. This leads to the graph-embedding problem with faulty edges and/or vertices. This problem has received much attention (see [3-10]).

The problem of embedding paths in an n-dimensional hypercube and folded hypercube has been well studied. Tsai [3] showed that for any subset F_{v} of $V\left(Q_{n}\right)$ with $\left|F_{v}\right| \leq n-2$, every edge of $Q_{n}-F_{v}$ lies on a cycle of every even length from 4 to $2^{n}-2\left|F_{v}\right|$ inclusive. Tsai [4] also showed that for any subset F_{v} of $V\left(Q_{n}\right)$ with $\left|F_{v}\right| \leq n-1$ and all faulty vertices are not adjacent to the same vertex, every edge of $Q_{n}-F_{v}$ lies on a cycle of every even length from 6 to $2^{n}-2\left|F_{v}\right|$ inclusive. Hsieh

[^0]and Shen [5] proved that every edge of $Q_{n}-F_{v}-F_{e}$ lies on a cycle of every even length from 4 to $2^{n}-2\left|F_{v}\right|$ even if $\left|F_{v}\right|+\left|F_{e}\right| \leq n-2$, where $n \geq 3$.

Let $F F_{v}$ and $F F_{e}$ denote the set of faulty nodes and faulty edges of $F Q_{n}$ respectively. Hsieh, Kuo and Huang [6] proved that if the folded hypercube $F Q_{n}$ has just only one fault node, then $F Q_{n}$ contains cycles of every even length from 4 to $2^{n}-2$ if $n \geq 3$, and cycles of every odd length from $n+1$ to $2^{n}-1$ when n is even, $n \geq 2$. Ma, Xu and $\mathrm{Du}[7]$ further demonstrated that $F Q_{n}-F F_{e}(n \geq 3)$ with $\left|F F_{e}\right| \leq 2 n-3$ contains a fault-free cycle passing through all nodes if each vertex is incident with at least two fault-free edges. Kuo and Hsieh [8] improved the conclusion of [7] and proved that $F Q_{n}-F F_{e}$ with $\left|F F_{e}\right|=2 n-3$ contains a fault-free cycle of every even length from 4 to 2^{n}. Xu , Ma and $\mathrm{Du}[9]$ further showed that every fault-free edge of $F Q_{n}-F F_{e}$ lies on a fault-free cycle of every even length from 4 to 2^{n} and every odd length from $n+1$ to $2^{n}-1$ if n is even, where $\left|F F_{e}\right| \leq n-1$. Then Cheng, Hao and Feng [10] proved that every fault-free edge of $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every even length from 4 to $2^{n}-2\left|F F_{v}\right|$ and every odd length from $n+1$ to $2^{n}-2\left|F F_{v}\right|-1$ if n is even, where $\left|F F_{v}\right| \leq n-2$.

In this paper, under the conditional $\left|F F_{v}\right| \leq n-1$ and all faulty vertices are not adjacent to the same vertex, we show that if $n \geq 4$, then every edge of $F Q_{n}-F F_{v}$ lies on a fault-free cycle of every even length from 6 to $2^{n}-2\left|F F_{v}\right|$.

2 Preliminaries

Please see [1] for graph-theoretical terminology and notation is not defined here. A network is usually modeled by a simple connected graph $G=(V, E)$, where $V=V(G)($ or $E=E(G))$ is the set of vertices (or edges) of G. We define the vertex x to be a neighbor of y if $x y \in E(G)$. A graph G is bipartite if X, Y are two disjoint subsets of $V(G)$ such that $E(G)=\{x y \mid x \in X, y \in Y\}$. A graph $P=\left(u_{1}, u_{2}, \cdots, u_{k}\right)$ is called a path if the vertices $u_{1}, u_{2}, \cdots, u_{k}$ are distinct and any two consecutive vertices u_{i} and u_{i+1} are adjacent. u_{1} and u_{k} are called the end-vertices of P. If $u_{1}=u_{k}$, the path $P\left(u_{1}, u_{k}\right)$ is called a cycle (denoted by C). The length of a path P (a cycle C), denoted by $l(P)$ (or $l(C))$, is the number of edges in P (or $C)$. In general, the distance of two vertices x, y is the length of the shortest (x, y)-path.

The n-dimensional hypercube Q_{n} (or, n-cube) can be represented as an undirected graph with 2^{n} vertices. Every vertex $x \in Q_{n}$ is labeled as a binary string $x_{1} x_{2} \cdots x_{n}$ of length n from $00 \cdots 0$ to $11 \cdots 1$. Two vertices u and v are adjacent if their binary strings differ in exactly one bit. For convenience, we call $e \in E$ an edge of dimension i if its end-vertices strings differ in i th-bit. In the rest of this paper, we denote $x^{i}=x_{1} x_{2} \cdots \overline{x_{i}} \cdots x_{n}$, where $\overline{x_{i}}=1-x_{i}, x_{i}=0,1$. The Hamming

[^0]: *This project was supported by NSFC (11371162) and NSFC(11171129) and HuBei (T201103).
 ${ }^{\dagger}$ Manuscript received October 10, 2015
 ${ }^{\ddagger}$ Corresponding author. E-mail: 1101358757@qq.com

