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Abstract

For quantum fluids governed by the compressible quantum Navier-Stokes
equations in R3 with viscosity and heat conduction, we prove the optimal
Lp −Lq decay rates for the classical solutions near constant states. The proof
is based on the detailed linearized decay estimates by Fourier analysis of the
operators, which is drastically different from the case when quantum effects
are absent.
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1 Introduction

Let us consider the following classical hydrodynamic equations in R3 describing

the motion of the electrons in plasmas by omitting the electric potential

∂n

∂t
+ divΠ = 0, (1.1a)

∂Π

∂t
+ div(nu⊗ u− P ) = 0, (1.1b)

∂W

∂t
+ div(uW − Pu+ q) = 0, (1.1c)

where n is the density, u = (u1, u2, u3) is the velocity, Π = (Π1,Π2,Π3) and Πj = nuj
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is the momentum density, P = (Pij)3×3 is the stress tensor, W is the energy density

and q = −κ∇T is the heat flux and T is the temperature. This system also emerges

from descriptions of the motion of the electrons in semiconductor devices, with the

electrical potential and the relaxation omitted [4].

In this paper, we consider the following case. The stress tensor is given by

P = −nT I+
~2n
12

∇2 lnn+ S,

where I is the identity matrix and S is the viscous part of the stress tensor given by

S = µ(∇u+ (∇u)T) + δ(divu)I,

where µ > 0 and δ are the primary coefficients of viscosity and the second coefficients

of viscosity, respectively, satisfying 2µ+ 3δ ≥ 0. The energy density W is given by

W =
3

2
nT +

1

2
nu2 − ~2n

24
∆ lnn.

The quantum correction to the stress tensor was proposed by Ancona and Tiersten

[2] on general thermodynamical grounds and derived by Ancona and Iafrate [1] in the

Wigner formalism. The quantum correction to the energy density was first derived

by Wigner [14]. See also [5]. With these quantum corrections (~ > 0), system (2.7)

is called the compressible quantum Navier-Stokes (CQNS) equations. When ~ = 0,

it reduces to the standard compressible Navier-Stokes (CNS) equations and was

studied by Matsumura and Nishida [9] for the existence of smooth small solutions.

Obviously, (n, u, T ) = (1, 0, 1) is a solution for (2.7). To show the existence of

small solutions near (1, 0, 1), we consider (ρ, u, θ) = (n− 1, u, T − 1) and transform

(2.7) into the following quantum hydrodynamic equation

∂tρ+ u · ∇ρ+ (1 + ρ)divu = 0, (1.2a)

∂tu− µ

ρ+ 1
∆u− µ+ δ

ρ+ 1
∇divu = −u · ∇u−∇θ − θ + 1

ρ+ 1
∇ρ+

~2

12

∆∇ρ

ρ+ 1

−~2

3

div(∇
√
ρ+ 1⊗∇

√
ρ+ 1)

ρ+ 1
, (1.2b)

∂tθ −
2κ

3(1 + ρ)
∆θ = −u · ∇θ − 2

3
(θ + 1)∇ · u+

~2

36(1 + ρ)
div((1 + ρ)∆u)

+
2

3(1 + ρ)

{µ

2
|∇u+ (∇u)T |2 + δ(divu)2

}
. (1.2c)

Recently, we obtained the following global existence result of small smooth so-

lutions in [12].


