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Oscillation of 2nd-order Nonlinear Noncanonical
Difference Equations with Deviating Argument
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Abstract The purpose of this paper is to establish some new criteria for the
oscillation of the second-order nonlinear noncanonical difference equations of
the form

∆ (a (n) ∆x (n)) + q(n)xβ (g(n)) = 0, n ≥ n0

under the assumption
∞∑
s=n

1

a (s)
<∞.

Corresponding difference equations of both retarded and advanced type are
studied. A particular example of Euler type equation is provided in order to
illustrate the significance of our main results.
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1. Introduction

In this paper, we are concerned about some new criteria for the oscillation of the
second-order nonlinear difference equation with deviating argument of the form

∆ (a (n) ∆x (n)) + q(n)xβ (g(n)) = 0, n ≥ n0 ≥ 0, (1.1)

where n ∈ N (n0) = {n0, n0 + 1, . . .}, β is the ratio of positive odd integers, (a (n))n≥n0

and (g (n))n≥n0
are sequences of positive real numbers, and (g (n))n≥n0

satisfies

g (n) ≤ n− 1 ∀n ∈ N (n0) and lim
n→∞

g(n) =∞, (1.2)

or
g (n) ≥ n+ 1 ∀n ∈ N (n0) . (1.3)

We study (1.1) under the condition

lim
n→∞

R(n) <∞ where R(n) :=

∞∑
s=n

1

a (s)
. (1.4)
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By a solution of (1.1), we mean a real sequence (x (n))n≥n0−m, m =
infn∈N(n0) {g(n)}, which satisfies (1.1) for all n ≥ n0. Such a solution is called
“oscillatory”, if the terms x(n) of the sequence are neither eventually positive nor
eventually negative. Otherwise, the solution is said to be “nonoscillatory”. Equa-
tion (1.1) is “oscillatory”, if all its solutions oscillate.

We also note that equation (1.1) is in canonical form if R(n0) = ∞, and is
in noncanonical form if R(n0) < ∞. The structure of nonoscillatory (eventually
positive) solutions x(n) of (1.1) in the canonical form is of one sign and is eventually
positive, while for the noncanonical form, we eventually find ∆x (n) > 0 or ∆x (n) <
0.

The problem of determining the oscillation and nonoscillation of solutions of
difference equations has been a very active area of research in the last decade, and
for the survey of recent results, we refer the reader to the monographs [1], [2], [5]. In
recent years, there has been much research concerning the oscillation and asymptotic
behavior of solutions of various classes of difference equations, and we mention
[1− 9] and the references cited therein as example of some recent contributions in
this area. There have been numerous studies on second-order difference equations
due to their use in the natural sciences and as well as for theoretical interests.
Recent results on the oscillatory and asymptotic behavior of solutions of second-
order difference equations can be found, for example, in [10− 24]. However, it
appears that there are very few results regarding the oscillation of solutions of
second-order difference equations of the form of equation (1.1) with (1.4) satisfied.

In view of this, our aim in this paper is to present some new sufficient conditions
that ensure that all solutions of (1.1) are oscillatory. Contrary to the most existing
results, oscillation of the studied equation is attained via only one condition. We
also consider both retarded and advanced difference equations of type (1.1).

2. Main results

2.1. Equation (1.1) with retarded argument

Theorem 2.1. Assume that (1.2) and (1.4) hold. If

lim sup
n→∞


R (g(n) + 1)

∑g(n)−1
s=n0

q(s)

+
∑n−1
s=g(n)R(s+ 1)q(s)

+R−β(g(n))
∑∞
s=nR(s+ 1)q(s)Rβ(g(s))

 >

1, if β = 1

0, if β ∈ (0, 1)
, (2.1)

then all solutions of (1.1) are oscillatory.

Proof. Assume, for the sake of contradiction, that (x (n))n≥n0−m is a nonoscilla-
tory solution of (1.1). Then, it is either eventually positive or eventually negative.
As (−x (n))n≥n0−m is also a solution of (1.1), we may restrict ourselves only to
the case where x(n) > 0 for all large n. Let n1 ≥ n0 −m be an integer such that
x(n) > 0 for all n ≥ n1. Then, there exists n2 ≥ n1 such that x(g(n)) > 0, ∀n ≥ n2.
In view of this, equation (1.1) becomes

∆ (a (n) ∆x (n)) = −q(n)xβ (g(n)) ≤ 0, n ≥ n2, (2.2)
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