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An Analogue-difference Method and Application
to Induction Motor Models∗

Xilan Liu1,†, Jinrong Mu2,3 and Wenxia Wang4

Abstract The paper established a so-called analogue-difference method (AD-
M) to compute the numerical solutions for boundary value problems of higher-
order differential equations, which can be a fundamental method and performs
much better than the finite difference method (FDM), even for second-order
boundary value problems. Numerical examples and results illustrate the sim-
plicity, efficiency and applicability of the method, which also show that the
proposed method has obvious advantages over the methods presented by recent
state-of-the-art work for induction motor models.
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1. Introduction

The difference method (FDM) is a fundamental method to find numerical solutions
for boundary value problems of ordinary differential equations. Since the simplicity
and effectiveness, FDM has been applied to solve numerical solutions for second-
order boundary value problems of ordinary differential equations and partial differ-
ential equations (see [3]- [11]), and this method can be found in many text books
and papers related to numerical methods, see [2], [4], [7], [11] and references there-
in. In particular, [4] present the difference method for the classical second-order
boundary value problem in details. However, this method is not satisfied, and it is
even invalid in some situation for higher-order boundary value problems. On the
other hand, biologically inspired intelligent computing approach, based on artificial
neural networks (ANN) models, the authors of [1] established some methods by op-
timising efficient local search methods so-called sequential quadratic programming
(SQP), interior point technique (IPT) and active set technique (AST), they applied
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the methods to solve some fifth-order boundary value problems arisen in induction
motor. The authors show that their proposed technique is state-of-the-art, which is
good in accuracy. In [7] and [6], the authors developed the so-called new finite dif-
ference method to solve a second-order boundary value problem, and a eighth-order
boundary value problem respectively. However, the methods are only fourth-order
accurate. In this paper, we devote ourselves to improving the accuracy and efficien-
cy of FDE by using the higher-order derivative substitution formulation based on
Taylor expansion. Our new method can not only be applied to second-order bound-
ary value problems, but also higher-order boundary value problems especially, and
it also can be applied to all models of [1], which shows that the method has higher
accuracy than those of [1].

To self completeness and clearness, we introduce some basic knowledge for FDM
(see [4] and references therein). Consider the following second-order BVP{

Lu ≡ −u′′ + q(t)u = f(t), a < t < b,

u(a) = α, u(b) = β,
(1.1)

where q(t), f(t) ∈ C[a, b], q(t) ≥ 0 for t ∈ [a, b]. Assumed that the problem (1.1)
has a unique solution. The process of numerical solution using classical difference
method as follows.

We divide the interval [a, b] into N equal parts, and take the grid points as
follows:

a = t0 < t1 < · · · < ti < · · · < tN = b, (1.2)

where ti = a + ih, step length h = b−a
N . Choose the second-order center difference

quotient formula at node ti

u′′(ti) ≈
1

h2
[u(ti−1)− 2u(ti) + u(ti+1)], (1.3)

then the following system obtained{
Lhui = − 1

h2 (ui−1 − 2ui + ui+1) + qiui = fi, i = 1, 2, · · · , N − 1,

u0 = α, uN = β,
(1.4)

where qi = q(ti), fi = f(ti), i = 0, 1, · · · , N . The truncation error of this method is

Ri(u) = Lu(ti)− Lhu(ti) =
h2

12
u(4)(ξi), ξi ∈ (ti−1, ti+1), (1.5)

where L is the derivative operator defined by Lu := u′′. The algebraic system (1.4)
can be written in matrix form
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