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Abstract. This article concerns the weak Galerkin mixed finite element method (WG-
MEFEM) for second order elliptic equations on 2D domains with curved boundary. The
Neumann boundary condition is considered since it becomes the essential boundary
condition in this case. It is well-known that the discrepancy between the curved phys-
ical domain and the polygonal approximation domain leads to a loss of accuracy for
discretization with polynomial order a >1. The purpose of this paper is two-fold. First,
we present a detailed error analysis of the original WG-MFEM for solving problems
on curved domains, which exhibits an O(h!/?) convergence for all a > 1. It is a little
surprising to see that even the lowest-order WG-MFEM (a = 1) experiences a loss of
accuracy. This is different from known results for the finite element method (FEM) or
the mixed FEM, and appears to be a combined effect of the WG-MFEM design and
the fact that the outward normal vector on the polygonal approximation domain is
different from the one on the curved domain. Second, we propose a remedy to bring
the approximation rate back to optimal by employing two techniques. One is a spe-
cially designed boundary correction technique. The other is to take full advantage of
the nice feature that weak Galerkin discretization can be defined on polygonal meshes,
which allows the curved boundary to be better approximated by multiple short edges
without increasing the total number of mesh elements. Rigorous analysis shows that
a combination of the above two techniques renders optimal convergence for all «. Nu-
merical results further confirm this conclusion.
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1 Introduction

Many practical problems arising in science and engineering are posed on domains with
curved boundaries. When such problems are approximated on polygonal or polyhe-
dral computational domains, the geometric difference between the two leads to a loss of
approximation accuracy [36,37] for high-order elements. To resolve this issue, a straight-
forward idea is to reduce the geometric error down to the same level of the approxima-
tion error. Popular methods following this track include the isoparametric finite element
method [22,27] and the isogeometric analysis [21,26]. However, due to their specialized
design, neither of them can be applied to meshes consisting of polygons or polyhedra.

In the past two decades, discretizations on polygonal and polyhedral meshes have
gained considerable attention in the scientific computing community. Various numerical
schemes have been proposed, including the virtual element method (VEM) (see [3] and
references therein), the discontinuous Galerkin method (DG) [19, 24, 33], and the weak
Galerkin method (WG) [32,40,41], to name a few. Very recently, researchers start to ap-
ply these discretizations to curved domains, which requires innovative techniques, with
its reason explained above. One emerging method is the boundary correction technique,
which may have its root date back to a 1972 paper by Bramble, Dupont and Thomée [11].
The idea is to use normal-directional Taylor expansion, in most cases just a linear approx-
imation, to correct function values on the boundary. Burman et al. [14, 15] proposed the
technique for a CutFEM discretization in 2018. It was soon applied to VEM by Bertoluzza
etal. [7]. In 2019, Cheung et al. [17] proposed a polynomial extension FEM which is based
on an averaged Taylor expansion. In a series of papers starting from 2018, Main and Sco-
vazzi [1,28,29] designed a shifted boundary FEM on non-fitted meshes, i.e., boundary
nodes of the mesh may not lie on the curved physical boundary. However, their method
uses lst-order (linear) Taylor expansion and hence only works for linear elements. Fi-
nally, we mention an earlier but closely related work [20], where instead of Taylor ex-
pansion the authors used a path integration to achieve a similar ‘boundary correction’
effect.

A totally different track, first proposed for VEM by Beirdo da Veiga et al. [5] in 2019,
is to define the discretization directly on curved mesh elements. This is possible because
of the ‘skeletal” style design of VEM, where the degrees of freedom (dofs) in the interior
and on the boundary of each mesh element are defined separately. In [5], dofs as well as
related shape functions on curved boundary edges are defined using the parameter in the
parametric equation of the curved boundary. Hence the shape functions on curved edges
are no longer polynomials in the physical space. Later a modification was proposed [4]
which uses the restriction of physical polynomials to define shape functions on curved
boundary edges. In 2021, Mu applied the idea to the primal WG discretization [30].
Because of the direct use of the curved boundary, the implementation of these methods
requires numerical integration formulae on curved mesh elements, as well as a mapping
between each curved boundary segment and its flat counterpart in the parametric space.
The theoretical analysis is also more complicated as it has to deal with the parametric



