
East Asian Journal on Applied Mathematics Vol. 13, No. 1, pp. 59-75

doi: 10.4208/eajam.161121.090722 February 2023

Convergence Rates of Split-Step Theta Methods

for SDEs with Non-Globally Lipschitz Diffusion

Coefficients

Xiaojuan Wu and Siqing Gan*

School of Mathematics and Statistics, HNP-LAMA, Central South University,

Changsha 410083, Hunan, China.

Received 16 November 2021; Accepted (in revised version) 9 July 2022.

Abstract. The present work analyzes the mean-square approximation error of split-step

theta methods in a non-globally Lipschitz regime. We show that under a coupled mono-

tonicity condition and polynomial growth conditions, the considered methods with the

parameters θ ∈ [1/2,1] have convergence rate of order 1/2. This covers a class of

stochastic differential equations with super-linearly growing diffusion coefficients such

as the popular 3/2-model in finance. Numerical examples support the theoretical results.
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1. Introduction

Stochastic differential equations (SDEs) play an important role in various fields of na-

tural and social sciences. However, most of SDEs can not be solved analytically, so that nu-

merical simulations become a vital tool for understanding SDE models. Various numerical

schemes are developed, with strong and weak approximation errors well studied under the

classical conditions that the coefficients of SDEs are globally Lipschitz continuous [21,30].

However, since the majority of nonlinear SDEs arising in applications have super-linearly

growing coefficients, the study of their numerical approximations is a non-trivial task. As is

shown in [16], for a large class of SDEs with super-linearly growing coefficients the popu-

larly used Euler-Maruyama (EM) method can produce numerical solutions with divergent

moment bounds as the time step-size tends to zero. This results in strong and weak diver-

gence of the numerical approximations. Such observations can be also found in the early

reference [11, Section 3], where a motivating example was given. Note that a large number

of works devoted to the numerical analysis of SDEs under non-globally Lipschitz conditions

makes an emphasis on implicit schemes — cf. [1–3,9,10,12,13,19,23,26,27,34,36], and on
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developing approximation methods based on modifications of traditional explicit schemes

— cf. [4–7,14,15,17,18,20,22,24,25,29,31–33,35,39], to just mention a few.

This work is concerned with a kind of split-step implicit schemes for SDEs with non-

globally Lipschitz coefficients, where the drift and diffusion coefficients are assumed to

obey the coupled monotonicity condition (2.3). This setting allows super-linearly grow-

ing diffusion coefficients and covers the popular 3/2-model in finance. The schemes under

consideration are called the split-step theta (SST) methods — cf. the Eqs. (2.2) below. They

have been introduced by Huang [13], where the exponential mean square stability of SST

methods and the usual stochastic theta methods (STMs), was examined under the mono-

tonicity condition (2.3). In particular, it was shown that the SST methods with θ > 1/2

have better nonlinear stability properties than the STMs do. The SST methods extend the

split-step backward Euler (SSBE) method proposed by Mattingly et al. [28], where the

ergodicity of SDEs with locally Lipschitz coefficients and their approximations have been

studied. They showed that the explicit EM method does not inherit the geometric ergodic-

ity of such SDEs while the SSBE scheme was able to reproduce the ergodicity. The strong

convergence rate of the SSBE scheme was first established in [9] for SDEs with non-globally

Lipschitz drift but globally Lipschitz diffusion coefficients. Similar strong convergence re-

sults are derived in [38] for the SST methods with θ ∈ [1/2,1] and in [19] for semi-implicit

split-step numerical methods and globally Lipschitz continuous diffusion coefficients. If the

diffusion coefficients can grow super-linearly, some efforts have been made to prove the

strong convergence rate of split-step type methods. Thus Liu et al. [23] proposed a family

of split-step balanced θ -methods for SDEs with non-globally Lipschitz continuous coeffi-

cients. Using the fundamental strong convergence theorem [33], they obtained the desired

strong convergence rate. Besides, using the notions of stochastic C-stability and stochas-

tic B-consistency, Andersson and Kruse [2] obtained the mean-square convergence rate of

the SSBE scheme under the coupled monotonicity condition (2.3) for non-globally Lips-

chitz diffusion coefficients. However, to the best of the authors knowledge, in the case of

non-globally Lipschitz diffusion coefficients, the convergence rates of general SST methods

(2.2) with θ ∈ [1/2,1] has not been studied. As pointed out in [9, p. 1060], the split-

step implicit method with θ = 1/2, may be of practical interest for Hamiltonian problems

perturbed by damping and/or noise.

Motivated by the above results, we study the mean-square error of the general SST

methods for SDEs with possibly super-linearly growing diffusion coefficients. In particular,

we show that SST methods with θ ∈ [1/2,1] converge with the rate 1/2 under a coupled

monotonicity condition and polynomial growth conditions. This setting covers a class of

SDEs with super-linearly growing diffusion coefficients including the popular 3/2-model

in finance. Wang et al. [36] proposed a new approach to the mean-square error analysis

for STMs. It does not require a priori high-order moment estimates of numerical approxi-

mations and allows to recover mean-square convergence rates of STMs with θ ∈ [1/2,1]

under the coupled monotonicity condition (2.3).

The present article extends the ideas of [36] to general SST methods with θ ∈ [1/2,1].

Unlike [36], we have to introduce an auxiliary process eX (tn) and develop a new techniques

in the error analysis — cf. the proof of Theorem 3.1 and comments at the end of Section 3.


