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Abstract. Electron spins in magnetic materials have preferred orientations collec-

tively and generate the macroscopic magnetization. Its dynamics spans over a wide
range of timescales from femtosecond to picosecond, and then to nanosecond. The

Landau-Lifshitz-Gilbert (LLG) equation has been widely used in micromagnetics sim-

ulations over decades. Recent theoretical and experimental advances have shown
that the inertia of magnetization emerges at sub-picosecond timescales and con-

tributes significantly to the ultrafast magnetization dynamics, which cannot be cap-

tured intrinsically by the LLG equation. Therefore, as a generalization, the iner-
tial LLG (iLLG) equation is proposed to model the ultrafast magnetization dynam-

ics. Mathematically, the LLG equation is a nonlinear system of parabolic type with
(possible) degeneracy. However, the iLLG equation is a nonlinear system of mixed

hyperbolic-parabolic type with degeneracy, and exhibits more complicated struc-

tures. It behaves as a hyperbolic system at sub-picosecond timescales, while behaves
as a parabolic system at larger timescales spanning from picosecond to nanosecond.

Such hybrid behaviors impose additional difficulties on designing efficient numeri-

cal methods for the iLLG equation. In this work, we propose a second-order semi-
implicit scheme to solve the iLLG equation. The second-order temporal derivative of

magnetization is approximated by the standard centered difference scheme, and the
first-order temporal derivative is approximated by the midpoint scheme involving

three time steps. The nonlinear terms are treated semi-implicitly using one-sided

interpolation with second-order accuracy. At each time step, the unconditionally
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unique solvability of the unsymmetric linear system is proved with detailed discus-
sions on the condition number. Numerically, the second-order accuracy of the pro-

posed method in both time and space is verified. At sub-picosecond timescales, the

inertial effect of ferromagnetics is observed in micromagnetics simulations, in con-
sistency with the hyperbolic property of the iLLG model; at nanosecond timescales,

the results of the iLLG model are in nice agreements with those of the LLG model,
in consistency with the parabolic feature of the iLLG model.
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1. Introduction

Ferromagnetic materials are widely used for data storage devices due to the real-

ization of fast magnetization dynamics under various external controls [4, 26]. In this

scenario, the dissipative magnetization dynamics is mainly controlled by the magnetic

degrees of freedom at timescales from picosecond (10−12 s) to nanosecond (10−9 s),

which is typically modeled by the conventional Landau-Lifshitz-Gilbert (LLG) equa-

tion [10,15]. However, some recent experiments including the observation of the spin

dynamics at sub-picosecond timescales [2] as well as the realization of the magneti-

zation reversal excited by the spin wave of sub-GHz frequency [11], indicated that

ultrafast magnetic dynamics can be properly described by the LLG equation via adding

an inertial term [3,9,18].

For the LLG equation with an inertial term, denoting τ as the characteristic timescale

of the inertial effect, the magnetization dynamics can be roughly divided into two

regimes: the diffusive regime at the timescale of t ≫ τ , and the hyperbolic regime at

the timescale of t ≈ τ . In the hyperbolic regime, magnetization dynamics exhibits the

inertial feature [17, 20]. From the modeling perspective, ∂tM and M × ∂tM control

the time evolution of magnetization M(x, t) in the LLG equation, and ∂ttM is further

added to account for the inertial effect. This modification leads to the inertial LLG

(iLLG) equation [9, 18]. Mathematically, the LLG equation is a nonlinear system of

equations of parabolic type with (possible) degeneracy. Under the condition t ≈ τ ,

the inertial term dominates and the iLLG equation is more like a nonlinear system of

equations of hyperbolic type. While under the condition t ≫ τ , the inertial term can

be ignored and the iLLG equation is more like a parabolic system. Therefore, a reliable

numerical method for the iLLG equation should capture both the inertial dynamics at

sub-picosecond timescales and the gyroscopic dynamics at nanosecond timescales.

There exist a large number of numerical methods for the LLG equation; see [8,13]

for reviews and references therein. First-order semi-implicit schemes such as the Gauss-

Seidel projection method [16,24] and the semi-implicit backward Euler method [7] are

well established. And recently, a second order semi-implicit projection method with


