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Abstract

A low order nonconforming mixed finite element method (FEM) is established for the

fully coupled non-stationary incompressible magnetohydrodynamics (MHD) problem in a

bounded domain in 3D. The lowest order finite elements on tetrahedra or hexahedra are

chosen to approximate the pressure, the velocity field and the magnetic field, in which

the hydrodynamic unknowns are approximated by inf-sup stable finite element pairs and

the magnetic field by H1(Ω)-conforming finite elements, respectively. The existence and

uniqueness of the approximate solutions are shown. Optimal order error estimates of

L2(H1)-norm for the velocity field, L2(L2)-norm for the pressure and the broken L2(H1)-

norm for the magnetic field are derived.
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1. Introduction

The incompressible MHD equation which couples Navier-Stokes equations with Maxwell’s

equations is usually used to describe the flow of a viscous, incompressible, and electrically con-

ducting fluid. The problem has a number of applications such as liquid-metal cooling of nuclear

reactors, electromagnetic casting of metals, MHD power generation and MHD ion propulsion [1].

Many studies have been devoted to the numerical analysis of stationary incompressible MHD

problems both in 2D and 3D. Compared with the finite difference methods [2, 3], most studies

are performed by FEMs [4–22]. The work started with [4], where the inf-sup stable mixed finite

elements were used to discretize the velocity field and the pressure, and H1-conforming finite

elements for the magnetic field, respectively. The existence and uniqueness of the solutions of a

weak form and a discrete form with inhomogeneous boundary condition were proved, and the

convergence analysis was presented, provided that Ω ⊂ R3 is either a convex polyhedron or has
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a boundary which is C1,1(see, Theorem 6.4. in [4]). For convex polyhedral domains, or domains

with a boundary C1,1, the convergence analysis of Garlerkin mixed FEMs, stabilized FEMs,

an optimal control method, the two-level FEM, the nonlinear Galerkin FEM and the Petrov-

Galerkin FEM were investigated in [5, 6, 13], [7, 8], [9], [10], [11] and [12], respectively. Some

other numerical schemes in general Lipschitz polyhedral domains were also realized in [14–23],

where mixed discrete formulations were proposed to approximate the magnetic field based on

H(curl)-conforming (edge) elements.

For non-stationary incompressible MHD problems, strong solutions are only known to exist

for small times and sufficiently regular data, while weak solutions exist globally. So it is im-

portant to develop different numerical schemes for the unsteady situation. The known results

including modeling, analysis and numerics are summarized in [1]. Moreover, the long-term

dissipativity and unconditional nonlinear stability of time integration algorithms were firstly

examined in [24]. From then on, the convergence of iterations of different coupling and de-

coupling fully discrete schemes towards weak solutions was verified in [25, 26], but they paid

no attention to the error estimates of the associated unknown variables. In order to make up

for this deficiency, the convergence analysis of locally divergence-free discontinuous Galerkin

methods with a second order Runge-Kutta time discretization was presented in [27], and the

error estimate was obtained for the the magnetic field in L2-norm of order O(∆t2 + hm+ 1

2 ),

where m is the degree of the local complete polynomials contained in the approximating space.

The stability and error analysis of the semi-discrete and Crank-Nicolson discretization were

derived in [28] for the quasi-static MHD equation at the small magnetic Reynolds number Rm.

The numerical analysis of the Backward-Euler discretization was studied in [29] for the same

equation as that of [28]. But the error estimate of the pressure for this uncoupled unsteady

MHD equations is not investigated in [28, 29]. Later on, more and more researchers paid more

attention to the fully coupled unsteady MHD equations, see, e.g. [30–37], which deduced opti-

mal error estimates for the all variables by the different discrete schemes. However, all of the

analysis mentioned above mainly concentrated on the conforming FEMs.

As we know, nonconforming finite elements, to some extend, are easier to be construct-

ed to satisfy the discrete inf-sup condition compared with conforming finite elements, and

the associated methods can be seen somehow between conforming FEMs and discontinuous

Galerkin methods. The continuity requirement of conforming FEMs is weakened in noncon-

forming FEMs but not removed completely from the approximation spaces as it is done in

discontinuous Galerkin methods. Furthermore, the use of nonconforming FEMs can avoid the

implementation of jumps terms which are essential for discontinuous Galerkin methods [62].

So nonconforming FEMs have been used effectively in flow problems and Maxwell’s equations

in 2D or 3D such as the convection-dominated transport problem [41, 42], the Stokes equa-

tions [43–52], the Navier-Stokes equations [53–60], the conduction-convection problem [61], the

Maxwell’s equations [63–69] and so on. For the fully coupled stationary MHD equations, non-

conforming mixed FEMs were analyzed in [17,70,71]. More precisely, the exactly divergence-free

velocity approximations and quasi-optimal order error estimates were derived in [17]. A family

of low order nonconforming mixed FEMs were proposed and optimal order error estimates for

all variables were obtained in [70, 71],.

As a continuous work, we are interested in the analysis of the nonconforming FEMs for the

fully coupled non-stationary MHD equations. The framework of nonconforming mixed FEMs is

developed and analyzed in this paper. Firstly, using the new inequality of the trilinear form in

the mixed variational formulation for MHD equations, we prove the existence and uniqueness


