Convergence of Extrapolated Dynamic StringAveraging Cutter Methods and Applications

Nguyen Buong ${ }^{1,2,3, *}$ and Nguyen Duong Nguyen ${ }^{4}$
${ }^{1}$ Institute of Theoretical and Applied Research, Hanoi 100000, Vietnam.
${ }^{2}$ Faculty of Information Technology, Duy Tan University, Da Nang 550000, Vietnam.
${ }^{3}$ Vietnam Academy of Science and Technology, Institute of Information Technology, 18, Hoang Quoc Viet, Hanoi, Vietnam.
${ }^{4}$ Foreign Trade University, 91, Chua Lang, Lang Thuong, Dong Da, Hanoi, Vietnam.
Received 8 June 2022; Accepted (in revised version) 22 September 2022.

Abstract

Two extrapolated dynamic string-averaging cutter methods for finding a common fixed point of a finite family of demiclosed cutters in a Hilbert space are developed. One method converges weakly to a common fixed point of the family. The other converges in norm and is a combination of the method mentioned and the steepest-descent method. The proof of the strong convergence does not employ any additional cutter related conditions such as approximate shrinking and bounded regularity of their fixed point sets often used in literature. Particular cases of the last method and applications to a convex optimization problem over the intersection of the level sets and the LASSO problem with computational experiments are provided as illustrations.

AMS subject classifications: 46N10, 47H09, 47H10, 47J25, 47N10, 65F10, 65J99
Key words: Quasi-nonexpansive mapping, fixed point, variational inequality, steepest-descent method.

1. Introduction

Let H be a real Hilbert space equipped with the inner product $\langle.,$.$\rangle and with the cor-$ responding norm $\|$.$\| . Let L:=\{1, \ldots, m\}$ with a fixed integer $m \geq 1$ and let T_{i}, for each $i \in L$, be a demiclosed cutter on H, satisfying the condition $\cap_{i \in L} \operatorname{Fix}\left(T_{i}\right) \neq \emptyset$ where

$$
\operatorname{Fix}\left(T_{i}\right):=\left\{p \in H: p=T_{i} p\right\}
$$

is the set of the fixed points of T_{i}. Note that in what follows, we often write C_{i} for $\operatorname{Fix}\left(T_{i}\right)$.

[^0]The problem we consider in this paper consists in finding a point

$$
\begin{equation*}
p_{*} \in C:=\cap_{i \in L} C_{i} . \tag{1.1}
\end{equation*}
$$

When T_{i} is the metric projection $P_{C_{i}}$ on a given closed convex subset C_{i} in H, the problem (1.1) is called the convex feasibility problem. Several iterative solution methods have been studied in $[3,5-19,21,35,36]$. When T_{i} is a nonexpansive mapping on H for each $i \in L$, Yamada [36] proposed the hybrid steepest-descent method,

$$
\begin{equation*}
x^{k+1}=\left(I-t_{k} \mu F\right) T x^{k}, \quad k \geq 0, \tag{1.2}
\end{equation*}
$$

where I denotes the identity mapping in H, F is η-strongly monotone and l-Lipschitz continuous, $\mu \in\left(0,2 \eta / l^{2}\right)$ is a fixed number, the parameter t_{k} satisfies the conditions
(C1) $t_{k} \in(0,1)$ for all $k \geq 0, \lim _{k \rightarrow \infty} t_{k}=0$ and $\sum_{k \geq 0} t_{k}=\infty$,
(C2) $\sum_{k \geq 0}\left|t_{k}-t_{k+m}\right|<\infty$ or $\lim _{k \rightarrow \infty}\left|t_{k}-t_{k+m}\right| / t_{k}=0$,
and either

$$
\begin{equation*}
T=T_{m} T_{m-1} \cdots T_{1} \quad \text { or } \quad T=\sum_{i \in L} \omega_{i} T_{i} \tag{1.3}
\end{equation*}
$$

with $\omega_{i}>0$ and $\sum_{i \in L} \omega_{i}=1$. The first author and Duong [7] suggested a modification of (1.2), viz.

$$
\begin{equation*}
x^{k+1}=\left(1-\beta_{k}^{0}\right) x^{k}+\beta_{k}^{0}\left(I-t_{k} \mu F\right) T_{m}^{k} T_{m-1}^{k} \cdots T_{1}^{k} x^{k}, \tag{1.4}
\end{equation*}
$$

where

$$
T_{i}^{k}=I+\beta_{k}^{i}\left(T_{i}-I\right)
$$

with $\beta_{k}^{i} \in[a, b] \subset(0,1)$ for all $k \geq 0, i \in L$ and

$$
\lim _{k \rightarrow \infty}\left|\beta_{k+1}^{i}-\beta_{k}^{i}\right|=0
$$

This method does not requires condition (C2) and converges strongly.
The problem (1.1) has been recently studied [6,11,22,33]. Reich and Zalas [33] introduced the dynamic string-averaging method

$$
\begin{equation*}
x^{k+1}=T^{k} x^{k}, \quad T^{k}=\sum_{n=1}^{N_{k}} \omega_{n}^{k} S_{n}^{k} \tag{1.5}
\end{equation*}
$$

where $S_{n}^{k}=\prod_{i \in L_{n}^{k}} T_{i}$ is a product of mappings along the string $L_{n}^{k} \subset L$ for $n=1, \ldots, N_{k}$, $\omega_{n}^{k} \in[\varepsilon, 1-\varepsilon]$ with $\sum_{n=1}^{N_{k}} \omega_{n}^{k}=1$ and a sufficiently small value $\varepsilon>0$. Under the following assumptions:
(A1) each mapping T_{i} is a demiclosed cutter,
(A2) $L \subseteq L_{k} \cup \cdots \cup L_{k+s-1}$ for some $s \geq m-1$ where $L_{k}=L_{N_{k}}^{k}$,

[^0]: *Corresponding author. Email addresses: nguyenbuong@dtu.edu.vn, nbuong@ioit.ac.vn (Ng. Buong), duongnguyen@ftu.edu.vn (Ng.D. Nguyen)

