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Abstract

We use a narrow-band approach to compute harmonic maps and conformal maps for

surfaces embedded in the Euclidean 3-space, using point cloud data only. Given a surface,

or a point cloud approximation, we simply use the standard cubic lattice to approximate its

ε-neighborhood. Then the harmonic map of the surface can be approximated by discrete

harmonic maps on lattices. The conformal map, or the surface uniformization, is achieved

by minimizing the Dirichlet energy of the harmonic map while deforming the target surface

of constant curvature. We propose algorithms and numerical examples for closed surfaces

and topological disks. To the best of the authors’ knowledge, our approach provides the

first meshless method for computing harmonic maps and uniformizations of higher genus

surfaces.
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1. Introduction

Roughly speaking, a map between two surfaces is called conformal if it preserves angles,

and is called harmonic if it minimizes the stretching energy. Computing harmonic maps and

conformal maps has a wide range of applications, such as surface matching, surface parameter-

ization, shape analysis and so on. See [1–11] for examples of applications of conformal maps,

and [12–16] for examples of applications of harmonic maps.

Existing methods for computing harmonic maps and conformal maps mostly rely on the

triangle mesh approximation of a surface. However, it is often much easier to get point cloud

data, rather than the triangle mesh data. Contemporary 3D scanners can easily provide 3D

point cloud data sampled from the surfaces of solid objects, but sometimes it is inconvenient

to generate meshes upon point clouds. Since point clouds data do not contain information

about the connectivity, a lot of algorithms, which were well-established on meshes, cannot be

extended to point clouds directly.

Various meshless methods have been developed for computing conformal maps, mainly for

topological spheres and topological disks. One of the most used idea is to approximate the

Laplace-Beltrami operators or related differential equations on point clouds.
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This paper implemented a narrow-band approach. The idea of narrow bands was first used

by Sethian et al. [17] in the numerical implementation of the level-set method developed by

Osher et al. [18]. Later the idea was extended to computing eigenvalues of elliptic operators on

surfaces by Brandman [19] and Gao et al. [20].

We implement the idea of narrow-bands in computing harmonic maps and conformal maps

for a surface in the Euclidean 3-dimensional space. The basic idea is to use a dense 3-dimensional

lattice to approximate the ε-neighborhood of the surface, and then compute the discrete har-

monic map from the lattice to the target surface, by minimizing the Dirichlet energy (i.e., the

stretching energy). Conformal maps, or surface uniformizations, are computed by minimizing

the Dirichlet energy of the harmonic maps, as we deform the target surface of constant Gaussian

curvature. In this paper, we focus on harmonic diffeomorphisms and conformal diffeomorphisms

to surfaces of constant curvature ±1 or 0. These maps are particularly useful for global surface

parameterizations. More specifically, we propose algorithms and numerical examples for (1)

maps to the unit sphere, and (2) maps to flat rectangles, and (3) maps to flat tori, and (4)

maps to closed hyperbolic surfaces.

Not like the other meshless methods mentioned above, we do not approximate the Laplace-

Beltrami operator or related differential equations on the given point clouds. But we do ap-

proximate the harmonic maps on a surface using harmonic maps on its ε-neighborhood, which

is approximated using cubic lattice discretizations.

1.1. Previous Works

Comparing to methods for triangle meshes, there are much fewer works on meshless methods

of computing conformal and harmonic maps, especially for higher genus surfaces. Guo et al. [21]

computed global conformal parameterizations of surfaces by computing holomorphic 1-forms

on point clouds. Li et al. [22] computed harmonic volumetric maps by grids discretizations.

Meng-Lui [23] developed the theory of computational quasiconformal geometry on point clouds.

Using approximations of the differential operators on point clouds, Liang et al. [24,25] and Choi

et al. [26] computed the spherical conformal parameterizations of genus-0 closed surfaces, and

Meng et al. [27] computed quasiconformal maps on topological disks. Li-Shi-Sun [28] computed

quasiconformal maps from surfaces to planar domain, using the so-called point integral method

for discretizing integral equations for point clouds. Liu et al. [29] developed a free-boundary

conformal parameterization method for disk-type point clouds, where the geometric distortion

is much less than usual fixed-boundary methods. Other methods to approximate the Laplace-

Beltrami operator on point clouds can also be found in [30,31].

There is an extensive literature on computing conformal maps for triangle meshes. Gu-

Yau [32,33] developed the method of computing conformal structures of surfaces by computing

the discrete holomorphic one-forms. Pinkall-Polthier [13] proposed a method of conformal

parameterization by computing a pair of conjugate harmonic functions. Lévy et al. [34] and

Lipman [35] and Lui et al. [36] computed conformal or quasiconformal maps by minimizing or

controlling the conformal distortion. There is also a big family of methods based on various

notions of discrete conformality for triangle meshes, such as circle patterns [37–40], and inversive

distances [41, 42], and vertex scalings [40, 43, 44], and modified vertex scalings [45–48] allowing

diagonal switches. Some related convergence results for discrete conformality can be found in

[37,49–52], and other mathematical analysis can be found in [53–57]. Other works on computing

conformal maps on triangle meshes include [34,58–74].

For computing harmonic maps on triangle meshes, Gaster-Loustau-Monsaingeon [75,76] give


