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Abstract

The purpose of this paper is to verify that the computational scheme from [Heid et

al., Gradient flow finite element discretizations with energy-based adaptivity for the Gross–

Pitaevskii equation, J. Comput. Phys. 436 (2021)] for the numerical approximation of

the ground state of the Gross–Pitaevskii equation can equally be applied for the effective

approximation of excited states of Schrödinger’s equation. That procedure employs an

adaptive interplay of a Sobolev gradient flow iteration and a novel local mesh refinement

strategy, and yields a guaranteed energy decay in each step of the algorithm. The compu-

tational tests in the present work highlight that this strategy is indeed able to approximate

excited states, with (almost) optimal convergence rate with respect to the number of de-

grees of freedom.
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1. Introduction

Schrödinger’s equation is the fundamental equation of physics for describing quantum me-

chanical behaviour, see, e.g., [37, Ch. 1] or [31, Ch. 1] for an introduction to its basic theory.

The time-dependent dimensionless Schrödinger equation reads as

i∂tψ(x, t) = −1

2
∆xψ(x, t) + V (x)ψ(x, t); (1.1)

here, x and t denote the spatial and time variables, respectively, ∆x is the Laplacian in the

spatial coordinates, and ψ is a normalized time-dependent single-particle wavefunction. The

stationary state solution of Schrödinger’s equation (1.1) can be found by solving the linear

eigenvalue problem (EVP)

−1

2
∆xψ(x) + V (x)ψ(x) = Eψ(x), (1.2)

which is called the time-independent Schrödinger equation. Any (normalized) eigenfunction of

the EVP (1.2) is a quantum state of the underlying quantum mechanical system, and the cor-

responding eigenvalue E is the total energy. Moreover, the stationary Schrödinger equation

(1.2) coincides with the time-independent Gross–Pitaevskii equation (GPE) for non-interacting
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bosons, see, e.g., [4] for a profound mathematical treatment of Bose–Einstein condensates and,

in turn, of the GPE.

In this work, we restrict our focus to the following weak formulation of the time-independent

Schrödinger equation (1.2): Find E ∈ R and ψ ∈ H1
0(Ω) such that∫

Ω

(
1

2
∇xψ · ∇xϕ+ V (x)ψϕ

)
dx = E(ψ,ϕ)L2(Ω) ∀ϕ ∈ H1

0(Ω), (1.3)

where Ω ⊂ Rd, d = {1, 2, 3}, is a bounded, connected, and open set with Lipschitz boundary,

V ∈ L∞(Ω) is a potential function with V ≥ 0 almost everywhere, and (·, ·)L2(Ω) denotes the

standard L2(Ω)-inner product. We further note that, upon defining the functional

E(ψ) :=

∫
Ω

(
1

2
|∇xψ|2 + V (x)|ψ|2

)
dx, (1.4)

the weak Schrödinger equation (1.3) is the Euler–Lagrange formulation of the constrained min-

imisation problem

arg min
ψ∈SH

E(ψ), (1.5)

with SH := {ψ ∈ H1
0(Ω) : ‖ψ‖L2(Ω) = 1} signifying the L2(Ω)-unit sphere in H1

0(Ω). In

particular, the weak Schrödinger equation (1.3) can equivalently be written as

1

2
〈E′(ψ), ϕ〉 = E(ψ,ϕ)L2(Ω) ∀ϕ ∈ H1

0(Ω), (1.6)

with E′ denoting the Fréchet derivative and 〈·, ·〉 the duality pairing in H−1(Ω)×H1
0(Ω). More-

over, any solution of the local minimisation problem (1.5) is an L2(Ω)-normalized eigenfunction

of Schrödinger’s equation (1.3). We further note that if ψ ∈ SH is an eigenfunction of (1.3)

with associated eigenvalue E, then

E = E(ψ),

i.e., E(ψ) is the energy of the quantum state ψ.

Given that V ≥ 0 (almost everywhere in Ω), the stationary Schrödinger equation (1.3) has a

unique (L2(Ω)-normalized) positive eigenfunction ψGS > 0, which is called the ground state, see,

e.g., [27, Lem. 5.4]. Moreover, ψGS is an eigenfunction to the minimal (and simple) eigenvalue,

denoted by EGS, of (1.3), see [11].

Eigenfunctions of Schrödinger’s equation (1.3) of higher (corresponding) energy are called

excited states. We emphasise that every excited state is orthogonal to the ground state, since

the eigenvalue problem is linear. Indeed, it holds the following orthogonality property, which

will be crucial in the analysis below.

Proposition 1.1. If ψ1 and ψ2 are two eigenfunctions of Schrödinger’s equation (1.3) to dis-

tinct eigenvalues E1 and E2, respectively, then ψ1 and ψ2 are orthogonal with respect to the

L2(Ω)-inner product, i.e. (ψ1, ψ2)L2(Ω) = 0.

Proof. First, we note that

〈E′(ψ1), ψ2〉 =

∫
Ω

(∇xψ1 · ∇xψ2 + 2V (x)ψ1ψ2) dx = 〈E′(ψ2), ψ1〉.


