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Abstract. High-order spectral difference gas-kinetic schemes (SDGKS) are developed

for inviscid and viscous flows on unstructured quadrilateral meshes. Rather than the tra-

ditional Riemann solver, the spectral difference method is coupled with the gas-kinetic

solver, which provides a time-accurate flux function at the cell interface. With the time

derivative of the flux function, a two-stage fourth-order time-stepping method is adopted

to achieve high-order accuracy with fewer middle stages. The stability analysis for the

linear advection equation shows that fourth-order spatial and temporal discretization

SDGKS is stable under CFL condition. Quantitatively, the fourth-order SDGKS is around

8% more efficient than the traditional one with the Riemann solver and the strong sta-

bility preserving five-stage fourth-order Runge-Kutta method. Both steady and unsteady

tests obtained by SDGKS compare well with analytic solutions and reference results.
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1. Introduction

The high-order gas-kinetic schemes (GKS) under the finite volume framework have

been developed in the last decade [10]. The GKS flux is based on a time evolution solution

of the Bhatnagar-Gross-Krook (BGK) model [3]. Compared with traditional Riemann solver,

the highlights of GKS include these:

i) The gas distribution function at interfaces contains the evolution from the upwind

flux vector splitting to the central difference Lax-Wendroff type discretization.

ii) The inviscid and viscous fluxes are evaluated simultaneously.

iii) The GKS flux has multi-dimensional properties [34], where both normal and tangen-

tial derivatives of flow variables are involved in the time evolution of gas distribution

function.

iv) The time-accurate gas evolution updates the solution at the cell interface which can

be used in the construction of high-order compact schemes [38].

v) The multi-stage multi-derivative (MSMD) methods can be applied in GKS, and higher-

order time accuracy with few middle stages can be achieved.

vi) The multi-scale unified GKS (UGKS) is also developed for the whole flow regime

[13,14].

The family of high-order GKS [8], based on the same WENO reconstruction, has favor-

able performance in efficiency, accuracy, and robustness, in comparison with the traditional

high-order schemes with Riemann solver and Runge-Kutta (RK) time-stepping techniques.

Owing to the multi-dimensional property in GKS flux, it captures flow structures, such as

shear instabilities, much better than the schemes using the Riemann solver. Among those

high-order GKS, the two-stage fourth-order method (S2O4) [21] seems to be the optimal

choice and is efficient, accurate, and as robust as the second-order one. Besides, it has been

applied to multicomponent flow [19], the direct simulation of compressible homogeneous

turbulent flow [20], and hypersonic multi-temperature flow [4]. The high-order GKS has

been successfully extended to the discontinuous Galerkin (DG) [16, 25, 26] and the cor-

rection procedure via reconstruction (CPR) [36] as well. And it has been applied within

the finite difference framework on uniform grids [35]. In this paper, the high-order GKS

will be developed on the unstructured quadrilateral meshes under the spectral difference

framework for the first time.

The spectral difference (SD) method was firstly proposed in [15, 32] for simplex el-

ements and has been studied in the past decades. It combines the advantages of finite-

volume and finite-difference methods, such as geometric flexibility and high computa-

tional efficiency. The three-dimensional SD method has also been developed on hexahedral

meshes by Sun et al. [29] and was used to simulate turbulent channel flow in [11,23,24].

However, the original form of the SD method is known to have instability on triangular el-

ements, losing its popularity on simplex elements. Later, Balan et al. [1] proposed a stable


