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Abstract. We investigate time complexities of finite difference methods for solving the

multiscale transport equation by quantum algorithms. It is found that the time complex-

ity of classical and quantum treatments of the standard explicit scheme scale is O (1/ε),
where ε is a small scaling parameter. On the other hand, the complexity of the even-odd

parity based asymptotic-preserving (AP) schemes do not depend on ε. This indicates

that in quantum computing, AP schemes (and probably other multiscale ones) are of

great importance for solving multiscale transport and kinetic equations.
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1. Introduction

Transport equations arise in many important applications, from medical imaging, astro-

physics, nuclear reactor, to wave propagation in random media and semiconductor device

modeling [4,5,25,26]. These equations model probability distribution of particles in a back-

ground medium, thus are defined in phase space, suffering from curse-of-dimensionality.

In addition, the problem may encounter multiple temporal and spatial scales, and the nu-

merical resolution of the small scales will further increase the computational cost tremen-

dously. Despite of rapid development of multiscale methods, high dimensionality and mul-

tiple scales could still pose a major challenge for numerical simulations for transport, and

more generally, kinetic equations by classical computers.

On the other hand, quantum computers, in various instances, have been shown to ex-

hibit potential polynomial and even exponential advantage over the classical computers,
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if one designs adequate quantum algorithms. One of such possibilities is linear algebra

problems [6,10,12]. After numerical discretizations, ordinary and partial differential equa-

tions can also be formulated as linear algebra problems thus can also use quantum linear

algebra solvers to gain quantum advantages in dimension, precision, and the evolution

time [2,7,9,14,16,19,22,23]. Most of these works aim at producing quantum state, after

which a measurement is needed to extract classical data. In [14] though, physical observ-

ables are obtained with possible quantum advantage.

In particular, in [16], for a linear hyperbolic relaxation system with possibly stiff relax-

ation, it shows that a good multiscale scheme – in this case the popular in kinetic community

asymptotic-preserving (AP) scheme, has shown its advantage for quantum algorithms over

standard non-AP schemes. Specifically, the numerical complexity that depends on the recip-

rocal of the small physically scaling scales is great relaxed: the complexity of AP quantum

algorithms is independent of the small scaling parameter.

In this article we study the multiscale linear transport equation
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, xL < x < xR, −1≤ v ≤ 1, (1.1)

where f = f (t, x , v) is the probability density distribution for particles at space point x ∈ R,

time t, and v ∈ (−1,1) is the cosine of the angle between the particle velocity and the x -axis.

Comparing with the work in [16], here the equation is in the phase space, and one needs

to also discretize the velocity (or angle) variable, and to deal with the nonlocal collision

operator, hence further complicating the development of numerical approximations and the

study of their time complexity for quantum algorithms. Our goal is to compare the time

complexity of quantum algorithms based on an AP scheme [17] and a standard (explicit,

thus not AP) scheme and show that the former has a complexity independent of the small

physical scaling parameter ε while the latter depends on it. Hence, it demonstrates that

multiscale methods still make a big difference in terms of time complexity even for quantum

algorithms.

Since our aim is to compare the difference in dependence of ε, in this article we will only

study the spatially one dimensional equation. Quantum advantages in spatial dimensions

for numerical methods of partial differential equations have been well studied in other

literature, see for examples [7,15,16,21].

Compared with the earlier work [16], where a multiscale hyperbolic relaxation system

was studied, here in the time complexity analysis for transport equation defined in the

phase space with a nonlocal collisional term, the analytic difficulty is to give a lower bound

of the minimum singular value of the coefficient matrix. When neglecting the nonlocal

term, one easily observes that the problem is reduced to the prototype problem for fixed

velocity variable. Its simplicity allows one to estimate the singular values of the coefficient

matrix directly, in which the proof ultimately boils down to the upper bound of the 2-norm


