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Abstract. Phase-field models are widely used in studying multiphase flow dynam-

ics. Given the complexity and strong nonlinearity, designing accurate, efficient, and

stable numerical algorithms to solve these models has been an active research field
for decades. This paper proposes a novel numerical scheme to solve a highly cited

and used phase field hydrodynamic model for simulating ternary phase fluid flows.

The main novelty is the introduction of a supplementary variable to reformulate the
original problem into a constrained optimization problem. This reformulation leads

to several advantages for our proposed numerical algorithms compared with many
existing numerical techniques for solving this model. First, the developed schemes

allow more straightforward calculations for the hydrodynamic phase-field models

by solving a few decoupled Helmholtz or Poisson-type systems with a constant pre-
computable coefficient matrix, remarkably reducing the computational cost. Sec-

ondly, the numerical schemes can maintain mass conservation and energy dissipa-

tion at the discrete level. Additionally, the developed scheme based on the second-
order backward difference formula respects the original energy dissipation law that

differs from many existing schemes, such as the IEQ, SAV, and Lagrange multiplier
approaches for which a modified energy dissipation law is respected. Furthermore,

rigorous proof of energy stability and practical implementation strategies are pro-

vided. We conduct adequate 2D and 3D numerical tests to demonstrate the proposed
schemes’ accuracy and effectiveness.
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1. Introduction

Multiphase flows exist ubiquitously in nature and arise in many scientific and en-

gineering settings, such as biomedical, chemical, and industrial processes involving

three or more liquid components. As one of the most popular approaches for modeling

interfacial dynamics, the phase-field method provides a state-of-the-art alternative in-

terface capturing approach for multiphase flow problems (see [4,13,16,18,21,27,28]

and references therein). Some reasons include its simplicity of formulation and trans-

parent relations of its model parameters to the physical properties. Additionally, the

phase-field models and their hydrodynamic extensions are usually derived by follow-

ing thermodynamic laws, i.e., thermodynamically consistent, making them physically

sound. A typical example extensively studied is the Cahn-Hilliard-Navier-Stokes system

for simulating the dynamics of multiphase fluid mixtures. This paper mainly focuses on

the ternary-component Cahn-Hilliard-Navier-Stokes (ternary-NSCH) system to better

illustrate ideas. Notably, our idea also applies to many other hydrodynamic phase-field

models.

The three-component Cahn-Hilliard-Navier-Stokes model is generalized from the

two-phase scenario [3] by introducing three independent phase-field variables (φ1, φ2,
φ3) while these unknowns are linked through the hyperplane relation φ1+φ2+φ3 = 1.

Please refer to related papers [2, 3, 10, 19, 22] for more details. Traditionally, a La-

grangian multiplier was adopted into the system that introduced the first coupled non-

linear term among the three-phase variables [20,38]. However, such a simple system is

not well-posed for the total spreading case, and some nonphysical instabilities at inter-

faces may occur [2, 3]. To remedy this defect, a sixth-order polynomial-type coupling

potential is added to the free energy to ensure the system is well-posed. Develop-

ing efficient numerical approximations for solving the three-component Cahn-Hilliard-

Navier-Stokes model remains challenging due to the coupling of multi-physical fields

with hydrodynamics and their natural nonlinearity.

The phase-field models and their hydrodynamic extensions are usually derived from

an energy variational approach, so they naturally admit a free energy dissipation law.

This is also known as thermodynamically consistent. When the numerical schemes ex-

ploit the variational structure and preserve the dissipation law numerically, they are

called energy stable [9]. Suppose such numerical structure-preserving property does

not depend on the time step sizes. In that case, the numerical schemes are called ly

energy stable. In the past few decades, significant progress in developing structure-

preserving algorithms to solve thermodynamical and hydrodynamical phase-field mod-

els have been made, for instance, the fully-implicit structure-preserving schemes [3,

33], the convex splitting schemes [5, 8, 41], stabilizer technique [23, 26, 32]. In the

past few years, the invariant energy quadratization (IEQ) method and the scalar aux-

iliary variable (SAV) method, even in combination with stabilization terms, also have

fueled the development of energy stable schemes for solving the ternary-component

phase-field models [34, 36–38, 42, 43]. However, when some of these methods are ap-

plied to solving thermodynamically consistent models, the resulting schemes warrant


