
Numer. Math. Theor. Meth. Appl. Vol. 16, No. 3, pp. 622-633

doi: 10.4208/nmtma.OA-2022-0148 August 2023

A New Fixed-Time Dynamical System for Absolute

Value Equations

Xuehua Li1, Dongmei Yu2, Yinong Yang3, Deren Han4

and Cairong Chen1,*

1 School of Mathematics and Statistics, FJKLMAA and Center for Applied

Mathematics of Fujian Province, Fujian Normal University, Fuzhou 350007,

P.R. China
2 Institute for Optimization and Decision Analytics, Liaoning Technical

University, Fuxin 123000, P.R. China
3 School of Mathematics and Statistics, Liaoning University, Shenyang 110036,

P.R. China
4 LMIB of the Ministry of Education, School of Mathematical Sciences,

Beihang University, Beijing 100191, P.R. China

Received 9 September 2022; Accepted (in revised version) 24 December 2022

Abstract. A novel dynamical model with fixed-time convergence is presented to
solve the system of absolute value equations (AVEs). Under a mild condition, it

is proved that the solution of the proposed dynamical system converges to the so-

lution of the AVEs. Moreover, in contrast to the existing inversion-free dynamical
system (C. Chen et al., Appl. Numer. Math. 168 (2021), 170–181), a conservative

settling-time of the proposed method is given. Numerical simulations illustrate the

effectiveness of the new method.
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1. Introduction

To solve the system of absolute value equations (AVEs) is to find an x ∈ R
n such

that

Ax− |x| − b = 0, (1.1)

where A ∈ R
n×n, b ∈ R

n and |x| represents the componentwise absolute value of the
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unknown vector x. The AVEs (1.1) is a special case of the generalized absolute value

equations (GAVEs)

Cx−D|x| − c = 0, (1.2)

in which C,D ∈ R
m×n, x ∈ R

n and c ∈ R
m. The GAVEs (1.2) is originally introduced

by Rohn in [23] and further investigated in [6, 14, 21] and the references therein.

The AVEs (1.1) and the GAVEs (1.2) are closely related to many mathematical pro-

gramming problems, such as the linear complementarity problem (LCP) [8,14,16,21],

the horizontal LCP (HLCP) [19], the generalized LCP (GLCP) [16] and others, see

e.g. [15,16,21]. In addition, they have relevance to the system of linear interval equa-

tions [22].

Solving the GAVEs (1.2) is generally NP-hard [14]. Moreover, when the GAVEs

(1.2) is solvable, it concludes from [21] that checking whether the GAVEs (1.2) has

a unique solution or multiple solutions is NP-complete. Throughout this paper, we will

assume that A is invertible and ‖A−1‖ < 1, and thus the AVEs (1.1) has a unique

solution for any b ∈ R
n [16]. The interested reader is referred to [7,19,24,27,28] for

more discussions about the unique solvability of the AVEs (1.1).

There are many ways to solve AVEs (1.1), as long as it is uniquely solvable. The class

that we are interested in is the continuous solution schemes. We will briefly present

some of the existing work presented below. To this end, we recall two reformulations

of the AVEs (1.1). The first reformulation is obtained in the case that 1 is not the

eigenvalue of A, and, specifically, the AVEs (1.1) can be reformulated as an LCP [16]:

Find a u ∈ R
n such that

u ≥ 0, (A+ I)(A− I)−1u+ q ≥ 0,
〈

u, (A+ I)(A− I)−1u+ q
〉

= 0 (1.3)

with

q =
[

(A+ I)(A − I)−1 − I
]

b, u = (A− I)x− b. (1.4)

Obviously, if u∗ is a solution of the LCP (1.3), then x∗ = (A− I)−1(u∗ + b) is a solution

of the AVEs (1.1). The second reformulation is that the AVEs (1.1) is equivalent to the

following GLCP [16]: Find an x ∈ R
n such that

Q(x) = Ax+ x− b ≥ 0, F (x) = Ax− x− b ≥ 0,
〈

Q(x), F (x)
〉

= 0. (1.5)

By utilizing the reformulation (1.3) of the AVEs (1.1), some dynamical systems are

constructed to solve the AVEs (1.1). For instance, the following dynamical model:

state equation:
du

dt
= PΩ

[

u− λh(u, β)
]

− u,

output equation: x = (A− I)−1(u+ b)

is used by Mansoori et al. [18] to solve the AVEs (1.1), where

h(u, β) = e(u, β) − βMe(u, β),

e(u, β) = u− PΩ

[

u− β(Mu+ q)
]

,


