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Abstract. In this paper, we show that structures similar to self-attention are natural for learning many sequ-
ence-to-sequence problems from the perspective of symmetry. Inspired by language processing applications,
we study the orthogonal equivariance of seq2seq functions with knowledge, which are functions taking two
inputs – an input sequence and a knowledge – and outputting another sequence. The knowledge consists
of a set of vectors in the same embedding space as the input sequence, containing the information of the
language used to process the input sequence. We show that orthogonal equivariance in the embedding space
is natural for seq2seq functions with knowledge, and under such equivariance, the function must take a form
close to self-attention. This shows that network structures similar to self-attention are the right structures
for representing the target function of many seq2seq problems. The representation can be further refined if
a finite information principle is considered, or a permutation equivariance holds for the elements of the input
sequence.
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1 Introduction

Neural network models using self-attention, such as Transformers [47], have become the
new benchmark in the fields such as natural language processing and protein folding.
Though, the design of self-attention is largely heuristic, and a theoretical understanding
of its success is still lacking. In this paper, we provide a perspective for this problem from
the symmetries of sequence-to-sequence (seq2seq) learning problems. By identifying and
studying appropriate symmetries for seq2seq problems of practical interest, we demon-
strate that structures like self-attention are natural for representing these problems.

Symmetries in learning problems can inspire the invention of simple and efficient neu-
ral network structures. This is because symmetries reduce the complexity of the prob-
lems, and a network with matching symmetries can learn the problems more efficiently.
For instance, convolutional neural networks (CNNs) have seen great success in vision
problems, with the translation invariance/equivariance of the problems being one of the
main reasons. This is not only observed in practice but also justified theoretically [21].
Many other symmetries have been studied and exploited in the design of neural network
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models. Examples include permutation equivariance [57] and rotational invariance [8,17],
with various applications in learning physical problems. See Section 2.1 for more related
works.

In this work, we start by studying the symmetry of seq2seq functions in the embedding
space, the space in which each element of the input and output sequences is represented.
For a language processing problem, for example, words or tokens are usually vectorized
by a one-hot embedding using a vocabulary. In this process, the order of words in the
vocabulary should not influence the meaning of input and output sentences. Thus, if
a permutation is applied on the dimensions of the embedding space, the input and output
sequences should experience the same permutation, without other changes. This implies
a permutation equivariance in the embedding space. In our analysis, we consider equiv-
ariance under the orthogonal group, which is slightly larger than the permutation group.
We show that if a function f is orthogonal equivariant in the embedding space, then its
output can be expressed as linear combinations of the elements of the input sequence,
with the coefficients only depending on the inner products of these elements. Concretely,

let X ∈ R
d×n denote an input sequence with length n in the embedding space R

d. If

f (QX)=Q f (X) holds for any orthogonal Q∈R
d×d, then there exists a function g such that

f (X) = Xg(XT X).

However, the symmetry on the embedding space is actually more complicated than a sim-
ple orthogonal equivariance. In Section 3.2, we show that the target function for a sim-
ple seq2seq problem is not orthogonal equivariant, because the target function works in
a fixed embedding. To accurately catch the symmetry in the embedding space, we pro-
pose to study seq2seq functions with knowledge, which are functions with two inputs,

f (X, Z), where X ∈ R
d×n is the input sequence and Z ∈ R

d×k is another input represent-
ing our knowledge of the language. The knowledge lies in the same embedding space as
X and is used to extract information from X. With this additional input, the symmetry
in the embedding space can be formulated as an orthogonal equivariance of f (X, Z), i.e.
f (QX, QZ) = Q f (X, Z) for any inputs and orthogonal matrix Q. Intuitively understood,
in a language application, as long as the knowledge is always in the same embedding as
the input sequence, the meaning of the output sequence will not change with the embed-
ding. Based on the earlier theoretical result for simple orthogonal equivariant functions, if
a seq2seq function with knowledge is orthogonal equivariant, then it must have the form

f (X, Z) = Xg1(X
TX, ZTX, ZTZ) + Zg2(X

TX, ZTX, ZTZ).

If Z is understood as a parameter matrix to be learned, the following subset of this repre-
sentation:

f (X, Z) = Xg(XTZ)

is close to a self-attention used in practice, with Z being the concatenation of query and
key parameters. This reveals one possible reason behind the success of self-attention-
based models on language problems.

Based on the results from orthogonal equivariance, we further study the permutation
equivariance on the elements of the input sequence. Under this symmetry, we show that
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