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Abstract

A simple criterion is studied for the first time for identifying the discrete energy dis-

sipation of the Crank-Nicolson scheme for Maxwell’s equations in a Cole-Cole dispersive

medium. Several numerical formulas that approximate the time fractional derivatives are

investigated based on this criterion, including the L1 formula, the fractional BDF-2, and

the shifted fractional trapezoidal rule (SFTR). Detailed error analysis is provided within

the framework of time domain mixed finite element methods for smooth solutions. The

convergence results and discrete energy dissipation law are confirmed by numerical tests.

For nonsmooth solutions, the method SFTR can still maintain the optimal convergence

order at a positive time on uniform meshes. Authors believe this is the first appearance

that a second-order time-stepping method can restore the optimal convergence rate for

Maxwell’s equations in a Cole-Cole dispersive medium regardless of the initial singularity

of the solution.
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1. Introduction

Since the early 1990’s, studies on wave propagation in medium such as water, soil, biolog-

ical tissue, ionosphere, plasma, optical fiber and radar absorbing material, etc. [3, 17, 25, 29]

have aroused interest of engineers for the common property that the medium’s permittivity or

permeability depends on the wave frequency. Models investigating this dependency include the

Drude model [46], the Lorenz model [32] and the anomalously dispersive model such as the

Havriliak-Negami model [9, 10], Cole-Cole model [6], and so forth. Numerical techniques for

these models cover the finite difference time-domain (FDTD) methods [4,28,31,36,37], finite ele-

ment time-domain (FETD) methods [2,12,15,17], spectral time-domain (STD) methods [11,39]

and discontinuous Galerkin time-domain (DGTD) methods [21, 38], among others. Attempts

in frequency domain can also be found in [1, 5, 23, 26, 27] and references cited therein.
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In this study, we discuss the discrete energy dissipation law of the 2-D Maxwell’s equations

in a Cole-Cole dispersive medium [17], which can be stated as

ǫ0ǫ∞
∂E

∂t
= ∇×H − ∂P

∂t
, (1.1)

µ0
∂H

∂t
= −∇×E, (1.2)

τα0 ∂
α
t P (t) + P (t) = ǫ0(ǫs − ǫ∞)E(t), (1.3)

where E(x, t) = (E1, E2)
T , H(x, t) with x = (x1, x2)

T ∈ Ω = (a, b) × (c, d), t ∈ (0, T ], rep-

resent the electric field and magnetic field, respectively. P (x, t) is the polarization field in

time-domain. ǫ0, ǫ∞ and ǫs denote respectively the permittivity in the free space, infinite-

frequency permittivity and the static permittivity with the relation ǫs > ǫ∞. Besides, µ0 is the

permeability of free space and τ0 is the relaxation time. Here we define

∇×H =

(
∂H

∂y
,−∂H

∂x

)T

, ∇×E =
∂E2

∂x
− ∂E1

∂y
.

To close the problem (1.1)-(1.3), the following initial-boundary conditions are needed [17]:

E(x, 0) = E0(x), H(x, 0) = H0(x), P (x, 0) = 0 for x ∈ Ω, (1.4)

and

n×E = 0 on ∂Ω× [0, T ]. (1.5)

The fractional derivative operator ∂αt defined by

∂αt u(t) =
1

Γ(1− α)

∫ t

0

us(s)ds

(t− s)α
, (1.6)

is known as the Caputo fractional derivative. In this work, we shall take the strategy to

approximate the auxiliary differential equation (ADE) to deal with the polarisation for its

straightforward and easy implementation. Thus, the fractional derivative will be approximated

directly by some time-stepping methods of the form

∂
α,n− 1

2

t u = ∂αt u(tn− 1

2

) ≈ ∂
α,n− 1

2

τ u := τ−α
n∑

j=0

ωju
n−j, (1.7)

where τ denotes the time mesh size, and ωj are weights depending on different approximation

formulas.

It is shown in [17] that the model (1.1)–(1.3) admits the following energy dissipation law:

E(t) ≤ E(0) for any t ∈ [0, T ],

E(t) = ǫ0(ǫs − ǫ∞)
(
ǫ0ǫ∞‖E(t)‖20 + µ0‖H(t)‖20

)
+ ‖P (t)‖20.

(1.8)

However, the discrete version of (1.8) is still unknown to the best of our knowledge, which

motivates us to propose a criterion for the discrete energy dissipation when the Crank-Nicolson

scheme is adopted in temporal direction and fractional derivatives are approximated by formulas

like (1.7). We would like to mention that the study on the energy dissipation of the problem

(1.1)–(1.3) is rather limited. Yang et al. [39] studied the Havriliak-Negami model which is

a generalization of the Cole-Cole model by appealing to the approximation of the induced


