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Abstract

Implicit determinant method is an effective method for some linear eigenvalue opti-

mization problems since it solves linear systems of equations rather than eigenpairs. In

this paper, we generalize the implicit determinant method to solve an Hermitian eigenvalue

optimization problem for smooth case and non-smooth case. We prove that the implicit

determinant method converges locally and quadratically. Numerical experiments confirm

our theoretical results and illustrate the efficiency of implicit determinant method.
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1. Introduction

Let A(ω) ∈ Cn×n be an Hermitian matrix which analytically depends on a parameter ω ∈ R.

Let eigenvalues of A(ω) be sorted by λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λn(ω). In this work, for a fixed

integer l, 1 ≤ l ≤ n, we restrict our attention to minimize or maximize ϕ(ω) = λl(ω) in

a bounded interval (a, b), that is

min
ω∈(a,b)

ϕ(ω) or max
ω∈(a,b)

ϕ(ω). (1.1)

We assume that there exists a local extreme point ω∗ in (a, b).

Eigenvalue optimization problem (1.1) has many applications. For examples, the com-

putation of the stable radius [24] of a stable matrix, the computation of the H∞ norm [13]

of a linear system, the computation of the Crawford number [15] and quadratic constrained

quadratic programming [25] for a frequently encountered case [8], can be converted into eigen-

value optimization problem (1.1).

Many methods solve the eigenvalue optimization problem which is more general than (1.1),

say the parameter ω may be in high dimensional space. For example, Overton’s method bases

on successive quadratic programming [21]. The method of Mengi et al. bases on piecewise

quadratic support functions [20]. Subspace method of Kangal et al. solves large-scale eigenvalue

optimization problem [14]. All these methods require to solve an eigenvalue problem at each

iteration step.

The implicit determinant method (IDM for short) was originally proposed by Spence and

Poulton [23] for solving the nonlinear eigenvalue problem H(ω, λ)x = 0, where H(ω, λ) is an
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Hermitian matrix function with respect to the parameter ω, and λ is the eigenvalue of this

nonlinear eigenvalue problem. Later, Freitag and Spence [6] applied IDM to compute the

stable radius of a stable matrix. The computation of stable radius can be transformed into

eigenvalue optimization problem (1.1) which has a global minimizer ω∗ existing in a bounded

interval (−2‖A‖, 2‖A‖), with A(ω) = Ã− ωC̃ and l = N , where Ã, C̃ ∈ C
2N×2N are Hermitian

matrices [24]. In [7], Freitag et al. applied IDM to compute the H∞ norm. The computation

of the H∞ norm can also be converted into eigenvalue optimization problem (1.1) which has a

global maximizer ω∗ existing in a bounded interval, where λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λm(ω) are

finite generalized eigenvalues of the matrix pencil (A(ω), diag(I,0)), A(ω) = Ã−ωC̃, l = 1, Ã, C̃

are Hermitian matrices [7]. Compared with most methods for eigenvalue optimization problem,

the computation cost of IDM is to solve linear systems rather than eigenvalue problem at each

iteration step. However, in [6, 7], the conditions for IDM include 1. A(ω) is a linear matrix

function, that is A(ω) = Ã− ωC̃, 2. ϕ(ω∗) is a simple eigenvalue of A(ω∗).

In this paper, we first generalize IDM to solve eigenvalue optimization problem (1.1) where

A(ω) is a nonlinear Hermitian matrix function of ω. The generalization is almost straightfor-

ward, and the purpose is to introduce the IDM. However, the sequence generated by IDM only

converges to (ω∗, ϕ(ω∗)) if ϕ(ω∗) is a simple eigenvalue of A(ω∗), which implies ϕ(ω) is smooth

at ω∗. Secondly, we generalize the IDM for the case that ϕ(ω∗) is an eigenvalue of A(ω∗) with

multiplicity 2, and in this case, ϕ(ω) is usually non-smooth at ω∗. We prove that this general-

ized IDM converges locally quadratically. Similar to previous IDM, our generalized IDM only

needs to solve linear systems at each iteration step, and in turn, IDM is more effective than

other methods such as subspace method.

This paper is organized as follows. In Section 2, we apply IDM to solve eigenvalue optimiza-

tion problem (1.1) for the case that λ∗ = ϕ(ω∗) is a simple eigenvalue of A(ω∗), where A(ω)

is a nonlinear matrix function of ω. Under the condition that λ∗ = ϕ(ω∗) is an eigenvalue of

A(ω∗) with multiplicity 2, we generalize IDM to solve (1.1) and prove that it converges locally

quadratically in Section 3. In Section 4, numerical experiments confirm the rate of convergence

established in theory and show the efficiency of generalized IDM.

2. Implicit Determinant Method for Smooth Case

We first introduce the relation between smoothness of ϕ(ω) and multiplicity of eigenvalues

of A(ω) (see e.g., [9, 16, 18, 22]).

Theorem 2.1 ([9, Theorem S6.3]). Let A(ω) ∈ Cn×n be an Hermitian matrix-valued func-

tion that depends on ω ∈ R analytically. Then there exist scalar functions λ̃1(ω), . . . , λ̃n(ω) and

a matrix-valued function V (ω) = [v1(ω), . . . , vn(ω)], which are analytic for ω and possess the

following properties for every ω ∈ R:

A(ω) = V (ω) diag(λ̃1(ω), . . . , λ̃n(ω))V (ω)H, V (ω)HV (ω) = I.

The left subplot of Fig. 2.1 depicts these analytic eigenvalue curves λ̃i(ω), i = 1, . . . , n.

Now we sort these eigenvalue curves as λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λn(ω). The right subplot of

Fig. 2.1 depicts these sorted eigenvalue curves λi(ω). From Theorem 2.1, we can see that, λi(ω),

i = 1, . . . , n, are continuous and piecewise analytic [20]. For a fixed point ω, if λi(ω) is a simple

eigenvalue of A(ω), then λi(ω) is analytic at ω. If λi(ω) is not differentiable at ω, then λi(ω)

must be a multiple eigenvalue of A(ω).


