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Abstract. In this paper, we first reinvestigate the convergence of the vanilla SGD

method in the sense of L2 under more general learning rates conditions and a more
general convex assumption, which relieves the conditions on learning rates and does

not need the problem to be strongly convex. Then, by taking advantage of the Lya-

punov function technique, we present the convergence of the momentum SGD and
Nesterov accelerated SGD methods for the convex and non-convex problem under L-

smooth assumption that extends the bounded gradient limitation to a certain extent.
The convergence of time averaged SGD was also analyzed.
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1. Introduction

In this article, we study the convergence analysis of stochastic gradient descent

(SGD) type methods to the optimization problem

min
x∈Rd

f(x) :=
1

S

S
∑

i=1

fi(x), (1.1)

where f, fi : R
d → R are continuously differentiable functions and S is the num-

ber of samples in machine learning. Recently, stochastic gradient descent (SGD) has

played a significant role in training machine learning models when S is very large and

x has many components. The SGD is derived from gradient descent by replacing ∇f
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with ∇fsk , where sk is a random variable uniformly sampled from {1, 2, . . . , S}. The

iterative format is often read as

xk = xk−1 − αk∇fsk(xk−1) = xk−1 − αk∇f(xk−1) + αkξk, (1.2)

where αk is the learning rate, which satisfies the assumption (divergence condition)

lim
k→∞

αk = 0,

∞
∑

k=1

αk = ∞. (1.3)

In (1.2), the term ξk = ∇f(xk−1) − ∇fsk(xk−1). Let Fk = σ(x0, ξ1, ξ2, · · · , ξk) be the

filtration generated by (x0, ξ1, . . . , ξk), thus ξk satisfies E[ξk|Fk−1] = 0.

For iterative format (1.2), it has a mini-batch SGD [9] variant, which utilises

1

m

m
∑

i=1

∇fski (xk)

to estimate gradient, where ski are i.i.d random variables uniformly sampled from

{1, 2, . . . , S} and the noise term

ξk = ∇f(xk−1)−
1

m

m
∑

i=1

∇fski (xk).

For convenience, we will choose sample count m = 1 in this paper, and the results of

this paper are consistent for cases where m > 1.

Many elegant works have been done on the forms of generalization and theoretical

analysis of SGD-type methods [2, 4, 11, 16]. Here, the general Markovian iteration

forms of SGD-type methods are denoted as

• vanilla SGD (vSGD)

xk = xk−1 − αkF (xk−1, ξk), (1.4)

• momentum SGD (mSGD) [19]

xk = xk−1 + vk, vk = βkvk−1 − αkF (xk−1, ξk), (1.5)

• Nesterov accelerated form (NaSGD) [14]

yk = xk + βk(xk − xk−1), xk = yk−1 − αkF (yk−1, ξk), (1.6)

respectively. Here E[F (xk−1, ξk)|Fk−1] = ∇f(xk−1) and βk ∈ [0, 1) in (1.5) and (1.6).

For the above mentioned SGD-type methods, we assume the noise term {ξk} satisfy the

following conditional mean and covariance conditions:

E
[

ξk | Fk−1

]

= 0, E
[

‖ξk‖2 | Fk−1

]

≤ M + V ‖∇f(xk−1)‖2, (1.7)


