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Abstract. We present a new category of physics-informed neural networks called
physics informed variational embedding generative adversarial network (PI-VEGAN),

that effectively tackles the forward, inverse, and mixed problems of stochastic dif-

ferential equations. In these scenarios, the governing equations are known, but only
a limited number of sensor measurements of the system parameters are available.

We integrate the governing physical laws into PI-VEGAN with automatic differentia-

tion, while introducing a variational encoder for approximating the latent variables
of the actual distribution of the measurements. These latent variables are integrated

into the generator to facilitate accurate learning of the characteristics of the stochas-
tic partial equations. Our model consists of three components, namely the encoder,

generator, and discriminator, each of which is updated alternatively employing the

stochastic gradient descent algorithm. We evaluate the effectiveness of PI-VEGAN in
addressing forward, inverse, and mixed problems that require the concurrent calcu-

lation of system parameters and solutions. Numerical results demonstrate that the

proposed method achieves satisfactory stability and accuracy in comparison with the
previous physics-informed generative adversarial network (PI-WGAN).
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1. Introduction

Stochastic differential equations (SDEs) arise in many fields, including finance,

physics, and engineering, and typically involve random fluctuations in the underly-

ing system. The computational methods used to solve these equations must be able to
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handle both the spatial and temporal variability of the problem, as well as the stochas-

tic nature of the solution.

Over the past four decades, there has been a significant increase in the develop-

ment of numerical methods for stochastic differential equations. Monte Carlo meth-

ods, which involve simulating the underlying stochastic process using random sampling

techniques, are commonly used to solve SDEs. Other numerical methods for SDEs in-

clude spectral methods, which use Fourier or wavelet transforms to solve the equation

in the frequency domain, and stochastic Galerkin methods, which involve projecting

the SDE onto a finite-dimensional space and solving the resulting system of equations

using standard numerical techniques. For instance, Kloeden and Platen [21] examined

various strong and weak approximation methods based on the stochastic Taylor for-

mula for Ito stochastic differential equations. Stability and implementation issues have

been discussed in [4], with variable step size implementation shown to be superior to

fixed step size for small stochasticity. Tocino [25] developed a class of explicit Runge-

Kutta schemes of second order in the weak sense for systems of stochastic differential

equations with multiplicative noise. Furthermore, two Runge-Kutta schemes of third

order were obtained for scalar equations with constant diffusion coefficients, where the

first method generated independent identically distributed approximations of the solu-

tion by sampling the coefficients of the equation and used a standard Galerkin finite

element variational formulation. Babuska et al. [1] proposed a finite dimensional ap-

proximation of the stochastic coefficients, turning the original stochastic problem into

a deterministic parametric elliptic problem. A Galerkin finite element method of ei-

ther the h- or p-version was then used to approximate the corresponding deterministic

solution, which led to approximations of the desired statistics. However, traditional nu-

merical methods may not be efficient for high dimensional stochastic partial equations

and can suffer from the curse of dimensionality.

In recent years, the use of deep learning to solve fundamental partial differential

equations (PDEs) has gained considerable attention [10,24,26], thanks to the high ex-

pressiveness of neural networks and the rapid growth of computing hardware. Among

them, physics-informed neural networks (PINNs) [5, 11, 16, 17, 19, 23, 27–29, 31] are

a particularly interesting approach. PINNs incorporate physical knowledge as soft con-

straints in the empirical loss function and employ machine learning methodologies like

automatic differentiation and stochastic optimization to train the model. In [22], the

random PDE is approximated by a feed-forward deep residual network, with either

strong or weak enforcement of initial and boundary constraints. A reinforcement learn-

ing method was presented in [9] to solve backward stochastic differential equations,

where the gradient of the solution plays the role of a policy function and the loss func-

tion is given by the error between the prescribed terminal condition and the solution.

Chen et al. [6] employed a Karhunen-Loève expansion for the stochastic diffusivity

and arbitrary polynomial chaos for the solution, and then designed multiple neural

networks to solve stochastic advection–diffusion–reaction systems. A machine learn-

ing method, lifting the requirement for a deterministic forward solver, was presented

by [18] for high-dimensional uncertainty propagation of elliptic SDEs. In many practi-


