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Abstract

We propose and analyze a single-interval Legendre-Gauss-Radau (LGR) spectral col-

location method for nonlinear second-order initial value problems of ordinary differential

equations. We design an efficient iterative algorithm and prove spectral convergence for

the single-interval LGR collocation method. For more effective implementation, we pro-

pose a multi-interval LGR spectral collocation scheme, which provides us great flexibility

with respect to the local time steps and local approximation degrees. Moreover, we com-

bine the multi-interval LGR collocation method in time with the Legendre-Gauss-Lobatto

collocation method in space to obtain a space-time spectral collocation approximation for

nonlinear second-order evolution equations. Numerical results show that the proposed

methods have high accuracy and excellent long-time stability. Numerical comparison be-

tween our methods and several commonly used methods are also provided.
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1. Introduction

The initial value problems (IVPs) of second-order ordinary differential equations (ODEs)

appear in many fields of science and engineering. In addition, a large number of second-order

evolution equations, especially nonlinear wave equations, such as the Klein-Gordon and sine-

Gordon equations, are often transformed into IVPs of second-order ODEs after appropriate

spatial discretization methods. In the past few decades, great progress has been made in the

study of numerical methods for the IVPs of (second-order) ODEs. Traditional and frequently

used approaches for the numerical integration of (second-order) ODEs are mainly based on

implicit and explicit finite difference, Runge-Kutta and Newmark-type schemes. We refer the

reader to the monographs [8, 25, 26, 28, 29, 36, 41] for a comprehensive review.

As we all know, spectral methods have become important numerical methods for solving

partial differential equations (PDEs), and have a wide range of applications in many fields

of scientific and engineering computation, see, e.g., [6, 7, 10, 16, 18, 19, 40] and the references
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therein. Due to their high accuracy, spectral methods (including spectral collocation methods)

have been applied to the numerical integration of ODEs in recent years. For example, Guo et al.

developed several Laguerre spectral collocation methods [20, 23, 51, 52] and Legendre spectral

collocation methods [21,22,24,47] for nonlinear first and second-order IVPs of ODEs. In [1,2],

several spectral Galerkin and collocation methods were introduced for the numerical solutions

of nonlinear Hamiltonian (ODE) systems. For some other high order methods (including the

hp-version continuous and discontinuous Galerkin methods) for IVPs of ODEs, we refer the

reader to [3, 39, 48, 49, 53] and the references therein.

The main purpose of the present paper is to introduce and analyze a new spectral collocation

method based on Legendre-Gauss-Radau (LGR) points for the second-order ODEs of the form

{
u′′(t) = f(u′(t), u(t), t), t ∈ (0, T ],

u′(0) = v0, u(0) = u0,
(1.1)

where the values v0 and u0 describe the initial states of u(t) and f is a given function. For ease

of statement, we sometimes use the notations ∂tu and ∂2t u instead of u′ and u′′, respectively.

We first design a single-interval spectral collocation scheme for problem (1.1) based on N+1

LGR points (see (2.21)). We then construct a simple but efficient iterative algorithm for nu-

merical implementation of the single-interval collocation scheme by using Legendre polynomial

expansion. We carry out a rigorous error analysis for the proposed scheme. Theoretical results

show that the single-interval LGR collocation scheme has spectral accuracy, namely, for any

fixed mode N , the smoother the exact solution is, the more accurate the numerical solution

is. We also note that a Legendre-Gauss (LG) spectral collocation method has been proposed

and analyzed in [24] for second-order ODEs. The main differences between the present paper

and [24] are as follows: 1) Our collocation scheme is based on the LGR points, while the scheme

in [24] is based on the LG points, this brings us different considerations in the theoretical anal-

ysis; 2) Due to different choices of the collocation points and different analysis approaches, the

convergence of our method in N is half order higher than the method developed in [24] (see

also Remark 2.2); 3) We design a new fixed-point iterative algorithm, which is much simpler

and faster than that in [24] (see numerical comparison in subsection 2.5.2).

In order to improve the computational efficiency, we further propose a multi-interval LGR

collocation method based on domain decomposition. Roughly speaking, we divide the solution

interval (0, T ] into a series of non-overlapping subintervals, and then adopt the single-interval

LGR collocation scheme and the corresponding iterative algorithm to obtain local approx-

imation on each subinterval. The multi-interval LGR collocation scheme has the following

advantages:

• For large T , we can obtain the numerical solution by the single-interval LGR collocation

method on each subinterval step by step. In particular, the corresponding nonlinear al-

gebraic system on each subinterval usually contains only a small number of unknowns.

Therefore, the multi-interval collocation scheme can be implemented efficiently and eco-

nomically. At the same time, it keeps the global spectral accuracy.

• The multi-interval LGR collocation scheme has great flexibility with respect to the lo-

cal time steps and local approximation degrees. It is a variable-step and variable-order

scheme. This feature makes it easy for us to deal with solutions with complex dynamic

behaviors, such as oscillatory, singular and long-time behaviors.


