
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2023-0083

Vol. 34, No. 5, pp. 1177-1214
November 2023

A High Order Positivity-Preserving Discontinuous
Galerkin Remapping Method Based on a Moving Mesh
Solver for ALE Simulation of the Compressible Fluid Flow

Xiaolu Gu1, Juan Cheng2,3,* and Chi-Wang Shu4

1 Graduate School, China Academy of Engineering Physics, Beijing 100088, China.
2 Laboratory of Computational Physics, Institute of Applied Physics and
Computational Mathematics, Beijing 100088, China.
3 HEDPS, Center for Applied Physics and Technology, and College of Engineering,
Peking University, Beijing 100871, China.
4 Division of Applied Mathematics, Brown University, Providence, RI 02912.

Received 20 March 2023; Accepted (in revised version) 5 October 2023

Abstract. The arbitrary Lagrangian-Eulerian (ALE) method is widely used in the field
of compressible multi-material and multi-phase flow problems. In order to imple-
ment the indirect ALE approach for the simulation of compressible flow in the context
of high order discontinuous Galerkin (DG) discretizations, we present a high order
positivity-preserving DG remapping method based on a moving mesh solver in this
paper. This remapping method is based on the ALE-DG method developed by Klin-
genberg et al. [17, 18] to solve the trivial equation ∂u

∂t = 0 on a moving mesh, which
is the old mesh before remapping at t = 0 and is the new mesh after remapping at
t= T. An appropriate selection of the final pseudo-time T can always satisfy the rel-
atively mild smoothness requirement (Lipschitz continuity) on the mesh movement
velocity, which guarantees the high order accuracy of the remapping procedure. We
use a multi-resolution weighted essentially non-oscillatory (WENO) limiter which can
keep the essentially non-oscillatory property near strong discontinuities while main-
taining high order accuracy in smooth regions. We further employ an effective linear
scaling limiter to preserve the positivity of the relevant physical variables without sac-
rificing conservation and the original high order accuracy. Numerical experiments are
provided to illustrate the high order accuracy, essentially non-oscillatory performance
and positivity-preserving of our remapping algorithm. In addition, the performance
of the ALE simulation based on the DG framework with our remapping algorithm is
examined in one- and two-dimensional Euler equations.
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1 Introduction

For the numerical simulation of computational fluid dynamics (CFD), the Eulerian frame-
work and the Lagrangian framework are two classical approaches. In the Eulerian frame-
work, the fluid flows through a fixed mesh. It has strong robustness and can be used in
the flow field with large deformation, but getting the precise physical interface is chal-
lenging. The Lagrangian framework, in which the mesh moves with the fluid velocity,
can naturally and precisely track the interface between different materials and can cap-
ture the contact discontinuities sharply. Nevertheless, the computing process in the flow
field with significant deformation may be terminated due to mesh distortion. The arbi-
trary Lagrangian-Eulerian (ALE) approach, which allows the grid points to move with an
arbitrary velocity, could combine the best properties of the Lagrangian method and the
Eulerian method. The ALE method has been favored in computing compressible flow
with large deformation and is flexible in dealing with multi-material problems and the
problems with moving domains. The simulations of the compressible Euler equations us-
ing the ALE technique have attracted a lot of scientific attention [2,13,14,17,21,38,39,43].

Generally, ALE methods can be implemented in two manners, i.e., the direct ALE
method and the indirect ALE method. The indirect ALE method consists of three indi-
vidual steps: a Lagrangian step, a rezoning step and a remapping step. In the Lagrangian
step, the solution and the computational mesh are updated simultaneously. The nodes of
the computational mesh are adjusted to more optimal positions during the rezoning step
to improve the quality of the mesh and to relieve the error caused by mesh deformation.
The remapping step is then performed, where the Lagrangian solutions are conserva-
tively transferred from the old distorted Lagrangian mesh to the new rezoned mesh. The
last two steps are as critical to the accuracy of the overall simulation as the first step since
they must preserve the characteristic mesh features as well as the essential mathematical
and physical properties of the Lagrangian solution.

In the application of computational fluid dynamics, we can classify the indirect ALE
framework as based on the finite volume (FV) method [10, 21, 38] or the Runge-Kutta
discontinuous Galerkin (RK-DG) method [13, 17, 39]. The numerical solution of the DG
method is approximated by polynomials within each element. Hence it is easy to handle
problems including discontinuities. It is also flexible for complex mesh geometries and
unstructured meshes. Due to the excellent compactness and high order accuracy of the
DG method, it has been widely applied to deal with fluid dynamic problems. The type of
solution projected in the remapping phase is determined by the discretization methods
applied in the Lagrange phase. The remapping stage of the indirect ALE-FV technique
transfers the cell averages from the old mesh to the new mesh. There has been much
research on this strategy given in [5,9,15,20–22,30]. Under the indirect ALE framework in
conjunction with the DG approach, it is necessary to transfer the high order polynomials
to a different set of high order polynomials defined on the new rezoned mesh while
maintaining good performance. In this paper, we concentrate on the remapping step in
the indirect ALE framework together with the DG method.


