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Abstract. The baroclinic-barotropic mode splitting technique is commonly employed
in numerical solutions of the primitive equations for ocean modeling to deal with the
multiple time scales of ocean dynamics. In this paper, a second-order implicit-explicit
(IMEX) scheme is proposed to advance the baroclinic-barotropic split system. Specif-
ically, the baroclinic mode and the layer thickness of fluid are evolved explicitly via
the second-order strong stability preserving Runge-Kutta scheme, while the barotropic
mode is advanced implicitly using the linearized Crank-Nicolson scheme. At each
time step, the baroclinic velocity is first computed using an intermediate barotropic ve-
locity. The barotropic velocity is then corrected by re-advancing the barotropic mode
with an improved barotropic forcing. Finally, the layer thickness is updated by cou-
pling the baroclinic and barotropic velocities together. In addition, numerical inconsis-
tencies on the discretized sea surface height caused by the mode splitting are alleviated
via a reconciliation process with carefully calculated flux deficits. Temporal truncation
error is also analyzed to validate the second-order accuracy of the scheme. Finally,
two benchmark tests from the MPAS-Ocean platform are conducted to numerically
demonstrate the performance of the proposed IMEX scheme.
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1 Introduction

The ocean is a critical component of the climate and plays a significant role in our daily
lives. To comprehend and simulate ocean dynamics, various computational models have
been developed based on the fundamental laws of physics and the characteristics of geo-
physical flows. The primitive equations [1–3], a simplification of the Navier-Stokes equa-
tions, are one of these models. They have been widely used in real-world applications
and coupled with tracers such as temperature, salinity, and chemicals to fluid velocity,
fluid depth, and pressure. Due to the stratification effect of the ocean [4], the fluid is of-
ten modeled as a stack of immiscible layers, each with a uniform fluid density. Such lay-
ered models simplify the computational costs of stratified fluid flows and perform well
at portraying vertical profiles. For additional details, readers can refer to [3, 4] and the
references cited therein. Nonetheless, conducting long-term numerical simulations for
layered models is still quite challenging because of their extensive computational com-
plexity, which arises from the integration of the large-scale oceanic system. Specifically,
the oceanic dynamics frequently consist of various time scales resulting from the inter-
play between external and internal gravity waves and the rotation of the Earth. In layered
ocean models, the barotropic mode is considered as the fastest of the entire spectrum of
inertial-gravity waves, while the remaining part is referred to as the baroclinic mode. The
barotropic mode has a wave speed of up to approximately 200 m/s, while the advection-
dominated baroclinic mode is only about 2 m/s [5]. Since the barotropic velocity is about
two orders of magnitude faster than the baroclinic one, the barotropic mode highly re-
stricts the time step size under the Courant-Friedrichs-Lewy (CFL) condition if the entire
system is advanced via an explicit uniform stepping scheme. Therefore, it is natural to
split these two modes in ocean dynamics and evolve them separately over time.

The barotropic-baroclinic mode splitting technique has been extensively studied in
the literature [6–14]. This approach splits the primitive equations into two modes: the
barotropic mode, which is obtained through vertical averaging and is a 2D mode, and the
baroclinic mode, which is the difference between the original velocity and the barotropic
one and is a 3D mode. Many modern ocean models, such as the ”MPAS-Ocean” [15],
which was developed by Los Alamos National Laboratory and collaborating institu-
tions, use this mode splitting process to design efficient numerical methods for solving
the primitive equations. To advance the baroclinic mode, these models use explicit time
integration schemes that take advantage of the natural parallelism and ease implementa-
tion of explicit stepping. However, there are two methods for integrating the barotropic
mode: an explicit-subcycling approach and a semi-implicit solver approach. The explicit-
subcycling approach advances the barotropic mode using a smaller time step size to meet
the more restrictive CFL condition for the barotropic subsystem [11,13,15]. The resulting
numerical scheme, known as the split-explicit (SE) method, requires updating the inter-
mediate values during each subcycling step. This approach imposes intensive message
exchange among the processors/cores of high-performance computing clusters, which
may significantly affect the parallel scalability. Moreover, the SE method is not automati-
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