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NUMERICAL ANALYSIS OF A MIXED FINITE ELEMENT

APPROXIMATION OF A COUPLED SYSTEM MODELING

BIOFILM GROWTH IN POROUS MEDIA WITH SIMULATIONS

AZHAR ALHAMMALI1,∗, MALGORZATA PESZYNSKA2, AND CHOAH SHIN2

Abstract. In this paper, we consider mixed finite element approximation of a coupled system of
nonlinear parabolic advection-diffusion-reaction variational (in)equalities modeling biofilm growth
and nutrient utilization in porous media at pore-scale. We study well-posedness of the discrete
system and derive an optimal error estimate of first order. Our theoretical estimates extend

the work on a scalar degenerate parabolic problem by Arbogast et al, 1997 [4] to a variational
inequality; we also apply it to a system. We also verify our theoretical convergence results with
simulations of realistic scenarios.
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1. Introduction

Biofilms play an important role in a variety of scientific and engineering appli-
cations including microbial enhanced oil recovery (MEOR) [26], CO2 sequestration
[29, 17], bioremediation engineering [30], and so on.

Biofilm growth in porous media is affected by the ambient fluid flow and nutrient
availability. It is also subject to a volume constraint. In this paper we consider a
model proposed in [35] which is a coupled system involving a nonlinear parabolic
variational inequality (PVI) equipped with a new nonlinear diffusivity term and
subject to Neumann boundary conditions assuming the system is isolated. The
model of the biofilm growth is discussed in detail in Sec. 2. We are particularly
interested in simulating this model on voxel grids at the pore-scale, i.e., grids cor-
responding to the x-ray tomography images of porous media at the pore-scale.

We approximate the model with mixed finite element method (MFEM). We
believe this choice is better for the problem than the finite element method (FEM)
we considered in our earlier work in [1], because of the conservative property of
MFEM and its natural way of handling Neumann boundary conditions. (We remark
that MFEM works also very well theoretically and computationally when Dirichlet
condition is imposed unlike FEM that we succeeded in [1] in deriving an error
estimate with Dirichlet conditions only.) Moreover, the implementation of MFEM
with the lowest order of Raviart Thomas elements on rectangles and cubes RT[0]
as cell centered finite difference method (CCFD) is very easy to implement and to
use for voxel grids. We recall that CCFD is equivalent to this mixed FE up to
quadrature order of O(h2) for smooth solutions [34, 40] where the later is more
convenient to implement in practice.

MFEM has been studied extensively in literature including the theory developed
in [11, 8]. However, most of the work is devoted to either unconstrained problems
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such as [13, 4, 23], etc, or constrained stationary problem as in [12]. Semi-
discrete mixed finite element approximation for unconstrained parabolic problem
was considered in [13] for the linear case and in [23] for the nonlinear case.

There are several challenges in analysing the biofilm–nutrient model considered in
this paper. One of challenges is the fact that PVI lacks of regularity. In particular,
the second derivative in time of the solution utt /∈ L2 [22, 6]. Johnson in his paper
[22] overcomes this challenge by setting some realistic assumptions on the domain
and derives the error estimate of the finite element approximation of his problem
using summation by parts. We implemented Johnson’s approach in our previous
work [1] with the finite element approximation of a simple model of biofilm–nutrient
dynamic proposed in [32]. However, there are some major differences between the
problem in [1] and the problem considered here in this work. In [1] we considered
a quasi-linear PVI, where the diffusivity depends only on the spatial variable with
no advection term and the boundary conditions are of Dirichlet type. In contrast,
the problem in this paper has nonlinear diffusivity and an advection term with
Neumann boundary conditions. Johnson’s technique used in [22] does not work
with MFEM. Therefore, we implement time integration approach used in [4].

Another difficulty is the nonlinearity involved in both the diffusivity and the
reaction terms. Woodward and Dawson [41] deal with the nonlinearity using the
expanded mixed finite element method which introduces a new variable, and then
solves the problem in three unknowns (the primary unknown, its flux, and the new
variable). However, as it is described in [33], ”the expanded mixed finite element
method is not equivalent with the standard mixed finite element method and their
results cannot be simply transferred to our method MFEM”. Arbogast et al. [4]
consider an unconstrained nonlinear parabolic problem, where the nonlinearity is
in the reaction term and under time derivative; the diffusivity is nonlinear if the
change of variable is used. To derive the error estimate, they use the weighted
projection on the approximated space which depends on the diffusivity beside the
time integration technique. When we implement this approach to our problem,
we need to assume some regularities on the solution which we do not guarantee
that they are realistic ones. Therefore, to deal with the nonlinear diffusivity, we
first linearize our problem using Kirchhoff transformation as in [33], and then we
implement the approach used in [4]. We would like to emphasize here that the
works in [4] and [33] are on scalar unconstrained problems whereas our problem is
a constrained coupled nonlinear system.
Moreover, there are some studies in literature that regularize the PVI first using
Lagrange multipliers then approximate it with finite element method as in [21, 28,
31]. In this paper we keep the PVI formulation in the theoretical analysis, yet use
the Lagrange multiplier in computations.

1.1. Outline. Below we set up the notation. In Sec. 2 we provide details of the
model. The paper is next broken into two parts: the first deals with the scalar PVI
involving nonlinear diffusivity, and the second next deals with the additional chal-
lenges due to the coupled nature of the system. In Sec. 3 we provide mathematical
details and formulate assumptions on the scalar PVI involving a nonlinear diffu-
sivity. In Sec. 4 we provide details of the discretization and prove well-posedness
of the discrete system. In Sec. 5 we prove the result on the convergence of MFEM
approximation to this scalar problem. In Sec. 6 we provide the analyses for the full
coupled system, and in Sec. 7 we provide examples in d = 1 and d = 2.

The theoretical results we prove require various assumptions which are specific to
the result. In particular, the well-posedness in Sec. 4 and Sec. 6 are derived under


